



# CLARENCE COLLIERY Wollangambe River Environmental Monitoring Program Report March 2018 to August 2018

December 2018



## Contents

| 1     | INTRO   | DDUCTION                                                        | 1        |
|-------|---------|-----------------------------------------------------------------|----------|
| 2     | SAMF    | PLING PROGRAM                                                   | 2        |
|       | 2.1     | Report Layout                                                   | 5        |
|       | 2.2     | Rainfall and Mine Discharge Data                                | 5        |
| 3     | WATE    | ER QUALITY MONITORING RESULTS                                   | 9        |
|       | 3.1     | Methods and Data Presentation                                   | 9        |
|       | 3.2     | Physical and Mineral Analyte Monitoring Data                    | 10       |
|       | 3.3     | Nutrient & Organics Analyte Monitoring Data                     | 29       |
|       | 3.4     | Metal & Metalloid Analyte Monitoring Data                       | 39       |
| 4     | SEDII   | MENT QUALITY, PETROGRAPHY & COAL FINES RESULTS                  | 65       |
|       | 4.1     | Methods and Data Presentation                                   | 65       |
|       | 4.2     | Sediment Total Metal Monitoring Data                            | 66       |
|       | 4.3     | Petrography Analysis Data and Summary                           | 88       |
|       | 4.4     | Visual Inspections for Coal Fines Results                       | 94       |
| 5     | AQUA    | ATIC ECOLOGY SAMPLING RESULTS                                   | 95       |
|       | 5.1     | Methods and Data Presentation                                   | 95       |
|       | 5.2     | Macroinvertebrate Monitoring Data                               | 96       |
|       | 5.3     | Vertebrate Fish and Frog Monitoring Data                        | 97       |
| 6     | DISC    | JSSION                                                          | 98       |
| ТАВ   | LES     |                                                                 |          |
| 1     | Clare   | nce EPL EMP Sampling Schedule 16 to Feb 19                      | 4        |
| 2     | Daily   | Rainfall March 18 to August 18                                  | 6        |
| 3 to  | 8 Sumi  | mary Statistics Water Quality Physical & Mineral Analyte Data   | 11 to 12 |
| 9 to  | 14 Sun  | nmary Statistics Water Quality Nutrient & Organics Analyte Data | 30 to 31 |
| 15 to | o 20 Su | mmary Statistics Water Quality Metal & Metalloid Analyte Data   | 40 to 42 |
| 21 to | o 26 Su | mmary Statistics Sediment Total Metal Analyte Data              | 67 to 68 |
| 27 to | o 32 Su | mmary Statistics for Sediment Petrographic Analysis Data        | 88 to 89 |

#### FIGURES

| 1     | Clarence Colliery EMP Wollangambe River Sampling Locations        | 3        |
|-------|-------------------------------------------------------------------|----------|
| 2     | Daily Rainfall & LDP002 Discharge June 2016 to June 2017          | 7        |
| 3     | Daily Rainfall & LDP002 Discharge July 2017 to August 2017        | 7        |
| 4     | Daily Rainfall & LDP002 Discharge August 2017 to February 2018    | 8        |
| 5     | Daily Rainfall & LDP002 Discharge March 2018 to August 2018       | 8        |
| Wate  | r Quality Physical & Mineral Analyte Control Graphs & Box Plots   | 13 to 28 |
| Wate  | r Quality Nutrients & Organics Analyte Control Graphs & Box Plots | 32 to 38 |
| Wate  | r Quality Metals & Metalloids Analyte Control Graphs & Box Plots  | 43 to 64 |
| Sedir | ment Total Metals Control Graphs & Box Plots                      | 69 to 87 |
| Sedir | ment Petrographic Analysis Control Graphs & Box Plots             | 90 to 93 |

#### APPENDICES

- A Revised EMP dated 5 April 2016
- B ALS Laboratory Water and Sediment Analysis Reports March 2018 to August 2018
- C ALS Microscopic Analysis Reports for period March 2018 to August 2018 and DS1 to DS5 Coal Fines Inspection Photographs
- D Autumn 2018 Aquatic Ecology Report for reporting period March 2018 to August 2018

#### 1. INTRODUCTION

On 25 September 2015 Clarence Colliery (Clarence), in compliance with Clean Up Action 6 of Clean Up Notice No. 1532719, submitted a Draft Environmental Monitoring Program (EMP) to the NSW Environmental Protection Authority (EPA).

The EPA required the EMP to be developed to obtain information about the recovery of the Wollangambe River after a spill of coal fines on 2 July 2015. The objective of the EMP was to determine the state of the aquatic ecosystem of the Wollangambe River following completion of the clean-up activities, with monitoring for a period of time not less than 18 months, concentrating on sections of the River below where coal fines entered the River and downstream for at least 12 kilometres.

Following its review of the Draft EMP, the EPA proposed changes to the program based on the following;

- The importance of sediments in the affected part of the River as the sink for coal fines remaining in the River.
- The need to assess the impact of the coal fines spill for a period of not less than 18 months.
- The confounding factors relating to the impact of the non-spill factors from Clarence, such as the ongoing impact of the discharge of treated underground water and the past accumulation of metals in the sediments of the River.
- The advice of the Greater Blue Mountains World Heritage Area Advisory Committee to Centennial Coal dated 2 December 2015.

A copy of the Revised EMP, (dated 5 April 2016) is attached as **Appendix A** to this report. Further detail regarding the implementation of the EMP is included as a Pollution Reduction Program (PRP) within the Clarence Colliery Environment Protection Licence 726 (EPL726), as outlined below:

#### U1 Wollangambe Environmental Monitoring Program

*U1.1* The Licensee must implement the Revised Wollangambe River Environmental Monitoring Program (5 April 2016).

U1.2 The Licensee must commence implementation of the Program in August 2016.

*U1.3* The Licensee must provide interim reports in accordance with the Program. The reports must be;

- provided every seven (7) months from 31 August 2016; and
- received by the EPA's Central West (Bathurst) office on the last day of the month each report is due e.g. the first report is to be received on 31 March 2017.

U1.4 The Licensee must provide to the EPA's Central West (Bathurst) office a final report in accordance with the requirements of the Program within two (2) months of the completion of the Program.

This is the fourth interim report as required under PRP condition U1.3 (due by 31<sup>st</sup> December 2018) on the implementation and progress of the EMP, and reports on additional monitoring undertaken and completed between March 2018 and August 2018.

#### 2. SAMPLING PROGRAM

The revised EMP requires seven sampling locations, two sites upstream of the coal fines spill entry to the river (one upstream and one downstream of the Clarence Colliery LDP2 discharge entry to the river), and five sites downstream of the spill entry site - to include three sites within the section of river where coal fines were found, one site sufficiently further downstream assumed not to be impacted by the spill plus an intermediary site. Additional site selection criteria included the following:

- Utilise existing river monitoring sites where possible.
- Match site locations to increasing river stream order where possible.

**Figure 1** shows the adopted sampling locations along the Wollangambe River. The sites are described as follows:

- US1 Background upper catchment site (1<sup>st</sup> order stream). This site is located at the existing OEH W1 site. It is upstream of the LDP aquatic ecology monitoring site WGRup but it is the LDP WQ1 site and following two seasons of parallel monitoring at sites US1 and WGRup, the US1 site has now been adopted for both this EMP and the LDP aquatic ecology monitoring programs.
- US2 Between LDP2 entry and spill entry (upper end of 3<sup>rd</sup> Order stream section). Located at the existing LDP aquatic ecology monitoring site WGRdown.
- DS1 1km downstream of spill entry point (half way through 3<sup>rd</sup> Order stream section). Located at the LDP aquatic ecology monitoring site WGRXdown.
- DS2 About 3.5km downstream of spill entry point (at the upper end of the 4th Order stream section).
- DS2 About 5km downstream of spill entry point (about one quarter way into the 4th Order stream section).
- DS4 About 10.6km downstream of spill point (about three- quarter way through the 4th Order stream section above the Bells Creek confluence at Mount Wilson).
- DS5 Around 19km downstream of spill entry point, 5km into the 5<sup>th</sup> order stream section, and located just below the 3<sup>rd</sup> order Bell Ck confluence at Mt Wilson.

The EMP specifies that for each of the above sites, sediment and water quality, macroinvertebrates and vertebrates (fish and frog) sampling are to be undertaken, and that in addition visual inspections for any remaining and accumulated coal fines must be undertaken. The details for each of these monitoring elements are described further in the report sections below.

The EMP also specifies a sampling schedule over a two and half year period that includes monthly sampling for six months for some sites followed by bi-monthly sampling for the remainder of the EMP, plus a mix of quarterly, biannual and yearly requirements for other sites and study elements. **Table 1** identifies the relevant sampling periods for all sites, and the study elements that are included in this report are shown hatched in grey.

Marine Pollution Research Pty Ltd (MPR) was commissioned to undertake the aquatic ecology component of the sampling program and Clarence Colliery undertook the initial six month's water and sediment sampling plus production of the first six-month data EMP report. Following completion of the first EMP report by Clarence Colliery, MPR was commissioned to undertake the remaining water and sediment sampling and prepare the remaining EMP six-month data reports. Australian Laboratory Services (ALS) were commissioned by Clarence Colliery to provide water and sediment quality analysis plus provide Microscopic Analysis reports.



Figure 1. Wollangambe Monitoring Locations US1 through to DS5, in relation to Clarence Colliery

|            |                                                                                                                       |            | Tal                | ole 1. W      | ollang        | ambe F        | River E       | MP Sa         | mpling \$         | Schedul            | le*           |                    |               |         |
|------------|-----------------------------------------------------------------------------------------------------------------------|------------|--------------------|---------------|---------------|---------------|---------------|---------------|-------------------|--------------------|---------------|--------------------|---------------|---------|
| ear        | ıth                                                                                                                   | onth       | Petrogra<br>Analys | phic<br>sis   | Sedi<br>Me    | ment<br>tals  | Water         | Quality       | Macro-<br>Inverts | Fish<br>&<br>Frogs | Coal<br>In    | Fines V<br>spectio | /isual<br>ns  | Reports |
| Calendar Y | Study Mor                                                                                                             | Calendar M | US1, US2, DS4      | DS1, DS2, DS3 | US1, US2, DS4 | DS1, DS2, DS3 | US1, US2, DS4 | DS1, DS2, DS3 | US1 to DS4        | US1 to DS4         | US1, US2, DS4 | DS5                | DS1, DS2, DS3 |         |
| 2016       | 1                                                                                                                     | Sep        |                    |               |               | _             |               |               |                   |                    | ſ             |                    |               |         |
| 2016       | 2                                                                                                                     | Oct        |                    |               |               |               |               |               | Sp 16             |                    |               |                    |               |         |
| 2016       | 3                                                                                                                     | Nov        |                    |               |               |               |               |               |                   |                    |               |                    |               |         |
| 2016       | 4                                                                                                                     | Dec        |                    |               |               |               |               |               |                   |                    |               |                    |               |         |
| 2017       | 5                                                                                                                     | Jan        |                    |               |               |               |               |               |                   |                    |               |                    |               |         |
| 2017       | 6                                                                                                                     | Feb        |                    |               |               |               |               |               |                   |                    |               |                    |               |         |
| 2017       | 7                                                                                                                     | Mar        |                    |               |               |               |               |               |                   |                    | 1             |                    |               | No 1    |
| 2017       | 8                                                                                                                     | Apr        |                    |               |               |               | 4             |               | Au 17             |                    | 1             |                    |               |         |
| 2017       | 9                                                                                                                     | May        |                    |               |               |               |               |               | 1                 |                    |               |                    | -             |         |
| 2017       | 10                                                                                                                    | Jun        |                    |               |               |               | 4             |               | -                 |                    | 1             |                    |               |         |
| 2017       | 11                                                                                                                    | Jul        |                    |               |               |               |               |               |                   |                    |               |                    |               |         |
| 2017       | 12                                                                                                                    | Aug        |                    |               |               |               |               |               |                   |                    |               |                    |               |         |
| 2017       | 13                                                                                                                    | Sep        |                    |               |               |               | u             | d             | n                 | 1                  | 1             |                    |               | No 2    |
| 2017       | 14                                                                                                                    | Oct        |                    |               |               |               | -1            |               | -1                | 1                  | 1             |                    |               |         |
| 2017       | 15                                                                                                                    | Nov        |                    |               |               |               |               | d.            | Sp 17             | 0                  |               |                    |               |         |
| 2017       | 16                                                                                                                    | Dec        |                    |               |               |               | -1            |               | -1                | l                  | 1             |                    |               |         |
| 2018       | 17                                                                                                                    | Jan        |                    |               |               |               |               |               |                   |                    |               |                    |               |         |
| 2018       | 18                                                                                                                    | Feb        |                    |               |               |               |               |               |                   |                    |               |                    |               |         |
| 2018       | 19                                                                                                                    | Mar        |                    |               |               |               | ı             | d             | ı                 | C.                 | I             |                    |               | No 3    |
| 2018       | 20                                                                                                                    | Apr<br>M   |                    |               |               |               | 41            |               | A 19              | U                  | 1             |                    |               |         |
| 2018       | 21                                                                                                                    | Jun        |                    |               |               |               |               | u             | Aulo              | 0                  |               |                    |               |         |
| 2018       | 22                                                                                                                    | Jul        |                    |               |               |               | -1            |               | -1                | l.                 | 1             |                    |               |         |
| 2018       | 23<br>24                                                                                                              | Aug        |                    |               |               |               |               |               |                   |                    |               |                    |               |         |
| 2018       | 25                                                                                                                    | Sep        |                    |               |               |               |               |               |                   |                    |               |                    |               | No 4    |
| 2018       | 26                                                                                                                    | Oct        |                    |               |               |               |               |               |                   |                    |               |                    |               |         |
| 2018       | 27                                                                                                                    | Nov        |                    |               |               |               |               |               | Sp 18             |                    |               |                    |               |         |
| 2018       | 28                                                                                                                    | Dec        |                    |               |               |               |               |               | -                 |                    |               |                    |               |         |
| 2019       | 29                                                                                                                    | Jan        |                    |               |               |               |               |               |                   |                    |               |                    |               |         |
| 2019       | 30                                                                                                                    | Feb        |                    |               |               |               |               |               |                   |                    |               |                    |               |         |
| 2019       | 31                                                                                                                    | Mar        |                    |               |               |               |               |               |                   |                    |               |                    |               | Final   |
|            | 2019     31     Mar     Final       Note*     Gray fill means sampling completed and data included in reports to date |            |                    |               |               |               |               |               |                   |                    |               |                    |               |         |

## 2.1 Report Layout

The data for this summary report is contained in the following appendices:

- **Appendix B** provides the ALS laboratory reports for all the EMP water and sediment analysis surveys undertaken for this reporting period (March 2018 to August 2018).
- **Appendix C** provides the available ALS Microscope and Petrography data reports.
- **Appendix D** provides the MPR Autumn 2018 Aquatic Ecology report undertaken during this reporting period.

Data summary results are presented in the four following sections,

- Section 2.2 Rainfall and Mine Discharge Data,
- Section 3 Water Quality Monitoring Data,
- Section 4 Sediment Metals, Petrography Analysis & Coal Fines Inspections, and
- Section 5 Aquatic Ecology Monitoring Results.

Each Section provides a short outline of sampling methods, an explanation of how the data have been presented and a summary of analytes that are found at *below detection* concentrations.

## 2.2 Rainfall & Mine Discharge Data

Daily rainfall measurements are recorded at Clarence Colliery Meteorological Station located at Clarence Colliery pit top and operated on the Collier's behalf by ALS Global. Note that rainfall is recorded for the actual calendar day from midnight to midnight.

Background long-term mean monthly rainfall totals are acquired from Bureau of Meteorology Newnes Forest Centre Station (means based on data recorded from 1938 to 1999).

Clarence Colliery LDP 2 mine discharge data are collected by automatic flow monitors operated by ALS Global and both the site weather data and discharge flow are provided via a web link.

Daily rainfall and discharge volumes for 2015 to 2018 are shown graphically in **Figures 2-5. Table 2** shows daily rainfall for the present reporting period.

| Table 2 Daily                | Rainfall Ma | rch 2018 to A | August 2018 | (yellow highl | ights = samp | ling days) |
|------------------------------|-------------|---------------|-------------|---------------|--------------|------------|
| Day                          | March       | April         | May         | June          | July         | August     |
| 1                            | 0           | 0             | 0.2         | 0             | 0            | 0          |
| 2                            | 0           | 0             | 0.2         | 0             | 0            | 0          |
| 3                            | 0.4         | 0             | 0           | 1             | 9.2          | 0          |
| 4                            | 0           | 0.8           | 0           | 0             | 0.2          | 8.8        |
| 5                            | 2.4         | 0.2           | 0           | 0.8           | 0.2          | 0          |
| 6                            | 15          | 0             | 0           | 1.6           | 0            | 0          |
| 7                            | 6.6         | 0             | 0           | 3.6           | 0.8          | 11.4       |
| 8                            | 1           | 0             | 0           | 0.2           | 2.2          | 0          |
| 9                            | 0           | 0             | 0           | 6.6           | 0            | 0          |
| 10                           | 0           | 0             | 0           | 2.6           | 0            | 0          |
| 11                           | 0           | 0             | 0           | 0.8           | 0            | 0          |
| 12                           | 0.2         | 0             | 1.6         | 0             | 0            | 0.8        |
| 13                           | 0           | 0             | 0.6         | 0             | 0.2          | 0.4        |
| 14                           | 2.6         | 1.4           | 0           | 0             | 0            | 0          |
| 15                           | 0.6         | 2.4           | 0           | 0             | 0.2          | 0          |
| 16                           | 0.2         | 0             | 0.2         | 2.8           | 0            | 0          |
| 17                           | 0           | 0             | 0           | 0.4           | 0            | 0          |
| 18                           | 0           | 0.4           | 0           | 1.2           | 0            | 0          |
| 19                           | 0           | 0             | 0           | 2.8           | 0            | 1.6        |
| 20                           | 0           | 12.4          | 0           | 3             | 0            | 0          |
| 21                           | 3.6         | 0.4           | 0           | 0.4           | 0            | 0          |
| 22                           | 10.4        | 0             | 0           | 0.2           | 0            | 0          |
| 23                           | 8.8         | 0             | 0           | 0.2           | 0            | 0          |
| 24                           | 7.4         | 0             | 0           | 0             | 0            | 0          |
| 25                           | 9           | 0             | 0           | 0             | 0            | 0          |
| 26                           | 13.4        | 0             | 0           | 0             | 0            | 1.4        |
| 27                           | 0.6         | 0             | 0           | 0             | 0            | 13         |
| 28                           | 0           | 0             | 0           | 0.6           | 0            | 0.4        |
| 29                           | 0           | 1.4           | 0           | 18.4          | 0            | 0.2        |
| 30                           | 0           | 3.2           | 9.4         | 0.2           | 0.4          | 0          |
| 31                           | 0           |               | 0.6         |               | 0            | 0          |
| Monthly Total<br>(mm)        | 82.2        | 22.6          | 12.8        | 47.4          | 13.4         | 38         |
| Long-term<br>Monthly<br>Mean | 74.6        | 57.6          | 51.2        | 73.1          | 60.3         | 57.4       |

40 Rainfall (mm) Total 2015-2016 Figure 2. 35 Discharge (MI/Day) Mean Daily Rainfall 30 & LDP Discharge 25 Flow 2015 to 20 2016 15 10 5 0 2/12/15 2102146 2102116 2103/16 2104116 2105/16 2/06/16 2107145 2108/15 2120125 2/12/15 2109/15



Daily rainfall and LDP Discharge





Figure 5. Daily Rainfall & LDP Discharge Flow Mar 2018 to Aug 2018

## **3 WATER QUALITY MONITORING RESULTS**

Section 3.1 provides a summary of water quality monitoring methodology and outlines how the data are presented. Water quality monitoring results are provided in Sections
3.2 (Physical and Mineral), 3.3 (Nutrients and Organics) and 3.4 (Metals and Metalloids).

## 3.1 Methods and Data Presentation

#### Field Methods:

Water quality sampling is undertaken using a combination of metered water quality measurements and collection of water samples for subsequent laboratory analysis:

- A submersible Yeo-Kal 915 water quality data logger is used to record water temperature, dissolved oxygen concentration and saturation, pH, conductivity and turbidity at all sampling sites. The meter is calibrated daily before commencing field work and calibration is checked at the completion of each day's field work.
- Water samples are collected into suitable containers supplied by the NATA registered laboratory, and kept chilled in back-packs, then in a chilled esky for delivery to the laboratory on the same day.
- Due to the time taken to access Downstream sites and the requirement to deliver the samples to the laboratory on the same day where possible, water samples for dissolved metal analysis are not field-filtered.
- For some of the remote sites where samplers were unable to exit the site in time to deliver the samples on the same day, samples were kept chilled in a refrigerator overnight for delivery to the laboratory in the morning.

#### Data Presentation:

For each section the results are presented in a **Summary Table**, and are shown graphically in **Control Charts** and **Box-plots**:

- The **Summary Table** presents the analyte detection limit (DL), sample size, the number of sample values above DL, minimum, median, mean, standard deviation (SD) of the mean, 80<sup>th</sup> percentile and maximum value for each analyte over all sampling events to date. **Note that all results are expressed as mg/L.**
- Results for analytes that have all or most analytic results below detection are shaded in grey with no (or reduced) sample statistics calculated and no bar charts or box plots produced.
- Depending on sample size the following general rules apply to calculation of site statistics:
  - If no values >DL, <DL indicated in all statistical cells (the min, max, mean cells etc).
  - o if one value >DL, then maximum value only shown,
  - o if two values >DL, then maximum and minimum values shown only,
  - If three values >DL (for sample size of 5 through to 10), then use half DL values for calculation of statistics, and show the DL as the minimum value.
  - For analytes with 3 or more values above DL, median, mean, SD and 80<sup>th</sup> percentile statistics are calculated using halve DL values.
- The **Control Charts** provide results for the concentrations of each analyte over time for all six sites, from the first sample run in the first monitoring period (August 2016) to the most recent sample for this current monitoring period (August 2018). Most are shown in line graph mode.

- Where analyte values are similar across sites making discrimination of site differences difficult to see in line graph mode, the control graphs are shown in the form of clustered bar charts.
- Given the variation in sampling frequency between sites for the period August 2016 to August 2018 (see **Table 1**), the control graph quarterly data for sites US1, US2 and DS4 are shown as isolated data points, whereas the monthly data for sites DS1, DS2 and DS3 appear as continuous lines. Based on the intermonthly variation observed in analyte values for DS1, DS2 and DS3, lines connecting quarterly data points for sites US1, US2 and DS4 over this period would be misleading.
- **Box Plots** compare the summary statistical results for each analyte per site over the complete sampling program to date:
  - The upper and lower sides of the main box show the quartile (75 and 25 percentile) values for the data. The range between these values is called the interquartile range (IQR).
  - The line through the box shows the median (50 percentile) for the data and the cross (X) shows the mean value for the data.
  - The box 'whiskers' generally show the maximum and minimum values provided the data are all within 1.5 IQRs either side of the IQR.
  - If there are outlier data (i.e. values outside this range), they are shown as small circles located on both sides or on one side of the whiskers (depending whether the outliers are very low or very high value) and the whiskers on the side that have outliers then shows the 1.5 IQR limits for the data. Outliers will then indicate the relevant minimum or maximum value.

## 3.2 Physical & Mineral Water Quality Monitoring Data

The physical and mineral water quality results for each sampling location and event are provided below in Site Summary **Tables 3 to 8**, Control Charts, and Box Plots:

- Results for water pH, Electrical Conductivity and Turbidity for the first six months
  of sampling were intermittent and are a mix of laboratory measurements and field
  measurements where available, and field Temperature results were only
  available when water sampling coincided with aquatic ecology sampling. Whilst
  the field and laboratory results are generally compatible, the laboratory EC results
  are always calculated as EC at 25°C and field conductivity is measured at field
  ambient water temperature.
- Electrical Conductivity, water temperature, pH and turbidity results for the next six-monthly reporting period are based on both field and laboratory measurements.
- Metered dissolved oxygen sampling during water sampling only commenced in May 2017.
- TSS (<5mg/L), Hydroxide and Carbonate Alkalinity (< 1mg/L) concentrations were all <DL for all sites and for all sampling times to date, and are not shown in Control Graphs or Box Plots.
- Dissolved Sulphur, Magnesium and Potassium were all <DL (of 1mg/L) for Site US1 over all sample times and are shown in Control Graphs and Box Plots as Detection Limit value.

|                      |      |                     |       |          |           |                                                                                                                                                                                                                                                                               | Т                                                                                                                                                                                                                                                   | able 3 US1 F                                                                                                                                                                                                              | Physical and                          | Mineral W                       | ater Qualit                   | ty Summa | ry Statistic                                                                                                                                    | 5                    |                                          |         |                                                                                   |        |                                             |                 |                  |
|----------------------|------|---------------------|-------|----------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------|-------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------|---------|-----------------------------------------------------------------------------------|--------|---------------------------------------------|-----------------|------------------|
|                      | Temp | Dissolved<br>Oxygen | EC    | рН       | Turbidity | TSS                                                                                                                                                                                                                                                                           | Hydroxide<br>Alkalinity<br>as CaCO3                                                                                                                                                                                                                 | Carbonate<br>Alkalinity as<br>CaCO3                                                                                                                                                                                       | Bicarbonate<br>Alkalinity as<br>CaCO3 | Total<br>Alkalinity<br>as CaCO3 | Total<br>Hardness<br>as CaCO3 | Chloride | Dissolved<br>Sulfur as S                                                                                                                        | Total<br>Sulfur as S | Sulfate<br>as SO4 -<br>Turbidim<br>etric | Calcium | Magnesium                                                                         | Sodium | Potassium                                   | Total<br>Anions | Total<br>Cations |
|                      | °C   | % sat               | µS/cm | pH Units | NTU       | mg/L                                                                                                                                                                                                                                                                          | mg/L                                                                                                                                                                                                                                                | mg/L                                                                                                                                                                                                                      | mg/L                                  | mg/L                            | mg/L                          | mg/L     | mg/L                                                                                                                                            | mg/L                 | mg/L                                     | mg/L    | mg/L                                                                              | mg/L   | mg/L                                        | meq/L           | meq/L            |
| Detection limit (DL) | NA   | NA                  | NA    | NA       | NA        | 5                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                         | 1                                     | 1                               | 1                             | 1        | 1                                                                                                                                               | 1                    | 1                                        | 1       | 1                                                                                 | 1      | 1                                           | 0.01            | 0.01             |
| Sample size (n)      | 6    | 4                   | 4     | 5        | 1         | 6                                                                                                                                                                                                                                                                             | 9                                                                                                                                                                                                                                                   | 9                                                                                                                                                                                                                         | 9                                     | 9                               | 9                             | 9        | 9                                                                                                                                               | 9                    | 9                                        | 9       | 9                                                                                 | 9      | 9                                           | 9               | 9                |
| n > DL               | 6    | 4                   | 4     | 5        | 1         | 0                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                         | 3                                     | 3                               | 1                             | 9        | 0                                                                                                                                               | 2                    | 5                                        | 1       | 0                                                                                 | 9      | 0                                           | 9               | 9                |
| Min                  | 6.41 | 79.8                | 25    | 5.14     | -         | <dl< td=""><td><dl< td=""><td><dl< td=""><td>1</td><td>1</td><td>-</td><td>5</td><td><dl< td=""><td>1</td><td>1</td><td>-</td><td><dl< td=""><td>3</td><td><dl< td=""><td>0.16</td><td>0.13</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                 | <dl< td=""><td><dl< td=""><td>1</td><td>1</td><td>-</td><td>5</td><td><dl< td=""><td>1</td><td>1</td><td>-</td><td><dl< td=""><td>3</td><td><dl< td=""><td>0.16</td><td>0.13</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                 | <dl< td=""><td>1</td><td>1</td><td>-</td><td>5</td><td><dl< td=""><td>1</td><td>1</td><td>-</td><td><dl< td=""><td>3</td><td><dl< td=""><td>0.16</td><td>0.13</td></dl<></td></dl<></td></dl<></td></dl<>                 | 1                                     | 1                               | -                             | 5        | <dl< td=""><td>1</td><td>1</td><td>-</td><td><dl< td=""><td>3</td><td><dl< td=""><td>0.16</td><td>0.13</td></dl<></td></dl<></td></dl<>         | 1                    | 1                                        | -       | <dl< td=""><td>3</td><td><dl< td=""><td>0.16</td><td>0.13</td></dl<></td></dl<>   | 3      | <dl< td=""><td>0.16</td><td>0.13</td></dl<> | 0.16            | 0.13             |
| Median               | 14.3 | 86.3                | 31.0  | 5.8      | -         | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.5</td><td>0.5</td><td>-</td><td>6.0</td><td><dl< td=""><td>-</td><td>1.0</td><td></td><td><dl< td=""><td>4.0</td><td><dl< td=""><td>0.19</td><td>0.17</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>        | <dl< td=""><td><dl< td=""><td>0.5</td><td>0.5</td><td>-</td><td>6.0</td><td><dl< td=""><td>-</td><td>1.0</td><td></td><td><dl< td=""><td>4.0</td><td><dl< td=""><td>0.19</td><td>0.17</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>        | <dl< td=""><td>0.5</td><td>0.5</td><td>-</td><td>6.0</td><td><dl< td=""><td>-</td><td>1.0</td><td></td><td><dl< td=""><td>4.0</td><td><dl< td=""><td>0.19</td><td>0.17</td></dl<></td></dl<></td></dl<></td></dl<>        | 0.5                                   | 0.5                             | -                             | 6.0      | <dl< td=""><td>-</td><td>1.0</td><td></td><td><dl< td=""><td>4.0</td><td><dl< td=""><td>0.19</td><td>0.17</td></dl<></td></dl<></td></dl<>      | -                    | 1.0                                      |         | <dl< td=""><td>4.0</td><td><dl< td=""><td>0.19</td><td>0.17</td></dl<></td></dl<> | 4.0    | <dl< td=""><td>0.19</td><td>0.17</td></dl<> | 0.19            | 0.17             |
| Mean                 | 14.0 | 84.9                | 30.0  | 6.0      | -         | <dl< td=""><td><dl< td=""><td><dl< td=""><td>1.0</td><td>1.0</td><td>-</td><td>5.9</td><td><dl< td=""><td>-</td><td>0.9</td><td></td><td><dl< td=""><td>3.8</td><td><dl< td=""><td>0.19</td><td>0.17</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>        | <dl< td=""><td><dl< td=""><td>1.0</td><td>1.0</td><td>-</td><td>5.9</td><td><dl< td=""><td>-</td><td>0.9</td><td></td><td><dl< td=""><td>3.8</td><td><dl< td=""><td>0.19</td><td>0.17</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>        | <dl< td=""><td>1.0</td><td>1.0</td><td>-</td><td>5.9</td><td><dl< td=""><td>-</td><td>0.9</td><td></td><td><dl< td=""><td>3.8</td><td><dl< td=""><td>0.19</td><td>0.17</td></dl<></td></dl<></td></dl<></td></dl<>        | 1.0                                   | 1.0                             | -                             | 5.9      | <dl< td=""><td>-</td><td>0.9</td><td></td><td><dl< td=""><td>3.8</td><td><dl< td=""><td>0.19</td><td>0.17</td></dl<></td></dl<></td></dl<>      | -                    | 0.9                                      |         | <dl< td=""><td>3.8</td><td><dl< td=""><td>0.19</td><td>0.17</td></dl<></td></dl<> | 3.8    | <dl< td=""><td>0.19</td><td>0.17</td></dl<> | 0.19            | 0.17             |
| SD                   | 5.5  | 3.4                 | 3.6   | 0.8      | -         | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.9</td><td>0.9</td><td>-</td><td>1.1</td><td><dl< td=""><td>-</td><td>0.5</td><td>-</td><td><dl< td=""><td>0.8</td><td><dl< td=""><td>0.03</td><td>0.04</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>       | <dl< td=""><td><dl< td=""><td>0.9</td><td>0.9</td><td>-</td><td>1.1</td><td><dl< td=""><td>-</td><td>0.5</td><td>-</td><td><dl< td=""><td>0.8</td><td><dl< td=""><td>0.03</td><td>0.04</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>       | <dl< td=""><td>0.9</td><td>0.9</td><td>-</td><td>1.1</td><td><dl< td=""><td>-</td><td>0.5</td><td>-</td><td><dl< td=""><td>0.8</td><td><dl< td=""><td>0.03</td><td>0.04</td></dl<></td></dl<></td></dl<></td></dl<>       | 0.9                                   | 0.9                             | -                             | 1.1      | <dl< td=""><td>-</td><td>0.5</td><td>-</td><td><dl< td=""><td>0.8</td><td><dl< td=""><td>0.03</td><td>0.04</td></dl<></td></dl<></td></dl<>     | -                    | 0.5                                      | -       | <dl< td=""><td>0.8</td><td><dl< td=""><td>0.03</td><td>0.04</td></dl<></td></dl<> | 0.8    | <dl< td=""><td>0.03</td><td>0.04</td></dl<> | 0.03            | 0.04             |
| 80th percentile      | 17.8 | 86.8                | 32.4  | 6.4      | -         | <dl< td=""><td><dl< td=""><td><dl< td=""><td>1.4</td><td>1.4</td><td>-</td><td>6.4</td><td><dl< td=""><td>-</td><td>1.0</td><td>-</td><td><dl< td=""><td>4.4</td><td><dl< td=""><td>0.22</td><td>0.22</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>       | <dl< td=""><td><dl< td=""><td>1.4</td><td>1.4</td><td>-</td><td>6.4</td><td><dl< td=""><td>-</td><td>1.0</td><td>-</td><td><dl< td=""><td>4.4</td><td><dl< td=""><td>0.22</td><td>0.22</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>       | <dl< td=""><td>1.4</td><td>1.4</td><td>-</td><td>6.4</td><td><dl< td=""><td>-</td><td>1.0</td><td>-</td><td><dl< td=""><td>4.4</td><td><dl< td=""><td>0.22</td><td>0.22</td></dl<></td></dl<></td></dl<></td></dl<>       | 1.4                                   | 1.4                             | -                             | 6.4      | <dl< td=""><td>-</td><td>1.0</td><td>-</td><td><dl< td=""><td>4.4</td><td><dl< td=""><td>0.22</td><td>0.22</td></dl<></td></dl<></td></dl<>     | -                    | 1.0                                      | -       | <dl< td=""><td>4.4</td><td><dl< td=""><td>0.22</td><td>0.22</td></dl<></td></dl<> | 4.4    | <dl< td=""><td>0.22</td><td>0.22</td></dl<> | 0.22            | 0.22             |
| Max                  | 21.5 | 87.2                | 33.0  | 7.2      | 8.5       | <dl< td=""><td><dl< td=""><td><dl< td=""><td>3.0</td><td>3.0</td><td>2.0</td><td>8.0</td><td><dl< td=""><td>1.0</td><td>2.0</td><td>1.0</td><td><dl< td=""><td>5.0</td><td><dl< td=""><td>0.23</td><td>0.22</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td>3.0</td><td>3.0</td><td>2.0</td><td>8.0</td><td><dl< td=""><td>1.0</td><td>2.0</td><td>1.0</td><td><dl< td=""><td>5.0</td><td><dl< td=""><td>0.23</td><td>0.22</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>3.0</td><td>3.0</td><td>2.0</td><td>8.0</td><td><dl< td=""><td>1.0</td><td>2.0</td><td>1.0</td><td><dl< td=""><td>5.0</td><td><dl< td=""><td>0.23</td><td>0.22</td></dl<></td></dl<></td></dl<></td></dl<> | 3.0                                   | 3.0                             | 2.0                           | 8.0      | <dl< td=""><td>1.0</td><td>2.0</td><td>1.0</td><td><dl< td=""><td>5.0</td><td><dl< td=""><td>0.23</td><td>0.22</td></dl<></td></dl<></td></dl<> | 1.0                  | 2.0                                      | 1.0     | <dl< td=""><td>5.0</td><td><dl< td=""><td>0.23</td><td>0.22</td></dl<></td></dl<> | 5.0    | <dl< td=""><td>0.23</td><td>0.22</td></dl<> | 0.23            | 0.22             |
|                      |      |                     |       |          |           |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                           |                                       |                                 |                               |          |                                                                                                                                                 |                      |                                          |         |                                                                                   |        |                                             |                 |                  |
|                      |      |                     |       |          |           |                                                                                                                                                                                                                                                                               | Т                                                                                                                                                                                                                                                   | able 4 US2 F                                                                                                                                                                                                              | Physical and                          | Mineral W                       | ater Qualit                   | ty Summa | ry Statistic                                                                                                                                    | 5                    |                                          |         |                                                                                   |        |                                             |                 |                  |
|                      | Temp | Dissolved<br>Oxygen | EC    | рН       | Turbidity | TSS                                                                                                                                                                                                                                                                           | Hydroxide<br>Alkalinity<br>as CaCO3                                                                                                                                                                                                                 | Carbonate<br>Alkalinity as<br>CaCO3                                                                                                                                                                                       | Bicarbonate<br>Alkalinity as<br>CaCO3 | Total<br>Alkalinity<br>as CaCO3 | Total<br>Hardness<br>as CaCO3 | Chloride | Dissolved<br>Sulfur as S                                                                                                                        | Total<br>Sulfur as S | Sulfate<br>as SO4 -<br>Turbidim<br>etric | Calcium | Magnesium                                                                         | Sodium | Potassium                                   | Total<br>Anions | Total<br>Cations |
|                      | °C   | % sat               | µS/cm | pH Units | NTU       | mg/L                                                                                                                                                                                                                                                                          | mg/L                                                                                                                                                                                                                                                | mg/L                                                                                                                                                                                                                      | mg/L                                  | mg/L                            | mg/L                          | mg/L     | mg/L                                                                                                                                            | mg/L                 | mg/L                                     | mg/L    | mg/L                                                                              | mg/L   | mg/L                                        | meq/L           | meq/L            |
| Detection limit (DL) | NA   | NA                  | NA    | NA       | NA        | 5                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                         | 1                                     | 1                               | 1                             | 1        | 1                                                                                                                                               | 1                    | 1                                        | 1       | 1                                                                                 | 1      | 1                                           | 0.01            | 0.01             |
| Sample size (n)      | 6    | 4                   | 5     | 5        | 1         | 6                                                                                                                                                                                                                                                                             | 9                                                                                                                                                                                                                                                   | 9                                                                                                                                                                                                                         | 9                                     | 9                               | 9                             | 9        | 9                                                                                                                                               | 9                    | 9                                        | 9       | 9                                                                                 | 9      | 9                                           | 9               | 9                |
| n > DL               | 6    | 4                   | 5     | 5        | 1         | 0                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                         | 9                                     | 9                               | 9                             | 9        | 9                                                                                                                                               | 9                    | 9                                        | 9       | 9                                                                                 | 9      | 9                                           | 9               | 9                |
| Min                  | 12.3 | 83.8                | 283   | 5.48     | -         | <dl< td=""><td><dl< td=""><td><dl< td=""><td>14</td><td>14</td><td>90</td><td>3</td><td>30</td><td>27</td><td>82</td><td>26</td><td>6</td><td>2</td><td>3</td><td>2.27</td><td>2.00</td></dl<></td></dl<></td></dl<>                                                          | <dl< td=""><td><dl< td=""><td>14</td><td>14</td><td>90</td><td>3</td><td>30</td><td>27</td><td>82</td><td>26</td><td>6</td><td>2</td><td>3</td><td>2.27</td><td>2.00</td></dl<></td></dl<>                                                          | <dl< td=""><td>14</td><td>14</td><td>90</td><td>3</td><td>30</td><td>27</td><td>82</td><td>26</td><td>6</td><td>2</td><td>3</td><td>2.27</td><td>2.00</td></dl<>                                                          | 14                                    | 14                              | 90                            | 3        | 30                                                                                                                                              | 27                   | 82                                       | 26      | 6                                                                                 | 2      | 3                                           | 2.27            | 2.00             |
| Median               | 16.8 | 85.9                | 286.0 | 6.70     | -         | <dl< td=""><td><dl< td=""><td><dl< td=""><td>18.0</td><td>18.0</td><td>123.0</td><td>4.0</td><td>35.0</td><td>35.0</td><td>106.0</td><td>33.0</td><td>10.0</td><td>3.0</td><td>4.0</td><td>2.78</td><td>2.68</td></dl<></td></dl<></td></dl<>                                 | <dl< td=""><td><dl< td=""><td>18.0</td><td>18.0</td><td>123.0</td><td>4.0</td><td>35.0</td><td>35.0</td><td>106.0</td><td>33.0</td><td>10.0</td><td>3.0</td><td>4.0</td><td>2.78</td><td>2.68</td></dl<></td></dl<>                                 | <dl< td=""><td>18.0</td><td>18.0</td><td>123.0</td><td>4.0</td><td>35.0</td><td>35.0</td><td>106.0</td><td>33.0</td><td>10.0</td><td>3.0</td><td>4.0</td><td>2.78</td><td>2.68</td></dl<>                                 | 18.0                                  | 18.0                            | 123.0                         | 4.0      | 35.0                                                                                                                                            | 35.0                 | 106.0                                    | 33.0    | 10.0                                                                              | 3.0    | 4.0                                         | 2.78            | 2.68             |
| Mean                 | 16.5 | 86.8                | 301.2 | 6.54     | -         | <dl< td=""><td><dl< td=""><td><dl< td=""><td>20.3</td><td>20.3</td><td>122.0</td><td>3.9</td><td>34.7</td><td>33.4</td><td>108.8</td><td>33.2</td><td>9.4</td><td>3.3</td><td>3.7</td><td>2.78</td><td>2.67</td></dl<></td></dl<></td></dl<>                                  | <dl< td=""><td><dl< td=""><td>20.3</td><td>20.3</td><td>122.0</td><td>3.9</td><td>34.7</td><td>33.4</td><td>108.8</td><td>33.2</td><td>9.4</td><td>3.3</td><td>3.7</td><td>2.78</td><td>2.67</td></dl<></td></dl<>                                  | <dl< td=""><td>20.3</td><td>20.3</td><td>122.0</td><td>3.9</td><td>34.7</td><td>33.4</td><td>108.8</td><td>33.2</td><td>9.4</td><td>3.3</td><td>3.7</td><td>2.78</td><td>2.67</td></dl<>                                  | 20.3                                  | 20.3                            | 122.0                         | 3.9      | 34.7                                                                                                                                            | 33.4                 | 108.8                                    | 33.2    | 9.4                                                                               | 3.3    | 3.7                                         | 2.78            | 2.67             |
| SD                   | 3.3  | 3.4                 | 23.6  | 0.65     | -         | <dl< td=""><td><dl< td=""><td><dl< td=""><td>7.2</td><td>7.2</td><td>13.8</td><td>0.6</td><td>2.7</td><td>3.5</td><td>18.2</td><td>4.6</td><td>2.5</td><td>0.7</td><td>0.5</td><td>0.35</td><td>0.29</td></dl<></td></dl<></td></dl<>                                         | <dl< td=""><td><dl< td=""><td>7.2</td><td>7.2</td><td>13.8</td><td>0.6</td><td>2.7</td><td>3.5</td><td>18.2</td><td>4.6</td><td>2.5</td><td>0.7</td><td>0.5</td><td>0.35</td><td>0.29</td></dl<></td></dl<>                                         | <dl< td=""><td>7.2</td><td>7.2</td><td>13.8</td><td>0.6</td><td>2.7</td><td>3.5</td><td>18.2</td><td>4.6</td><td>2.5</td><td>0.7</td><td>0.5</td><td>0.35</td><td>0.29</td></dl<>                                         | 7.2                                   | 7.2                             | 13.8                          | 0.6      | 2.7                                                                                                                                             | 3.5                  | 18.2                                     | 4.6     | 2.5                                                                               | 0.7    | 0.5                                         | 0.35            | 0.29             |
| 80th percentile      | 17.9 | 88.9                | 322.6 | 6.93     | -         | <dl< td=""><td><dl< td=""><td><dl< td=""><td>24.8</td><td>24.8</td><td>132.8</td><td>4.0</td><td>37.0</td><td>36.4</td><td>125.2</td><td>36.8</td><td>12.0</td><td>4.0</td><td>4.0</td><td>3.06</td><td>2.92</td></dl<></td></dl<></td></dl<>                                 | <dl< td=""><td><dl< td=""><td>24.8</td><td>24.8</td><td>132.8</td><td>4.0</td><td>37.0</td><td>36.4</td><td>125.2</td><td>36.8</td><td>12.0</td><td>4.0</td><td>4.0</td><td>3.06</td><td>2.92</td></dl<></td></dl<>                                 | <dl< td=""><td>24.8</td><td>24.8</td><td>132.8</td><td>4.0</td><td>37.0</td><td>36.4</td><td>125.2</td><td>36.8</td><td>12.0</td><td>4.0</td><td>4.0</td><td>3.06</td><td>2.92</td></dl<>                                 | 24.8                                  | 24.8                            | 132.8                         | 4.0      | 37.0                                                                                                                                            | 36.4                 | 125.2                                    | 36.8    | 12.0                                                                              | 4.0    | 4.0                                         | 3.06            | 2.92             |
| Max                  | 21.7 | 91.4                | 333   | 7.20     | 18.8      | <dl< td=""><td><dl< td=""><td><dl< td=""><td>36</td><td>36</td><td>135</td><td>5</td><td>38</td><td>37</td><td>135</td><td>41</td><td>12</td><td>4</td><td>4</td><td>3.28</td><td>2.96</td></dl<></td></dl<></td></dl<>                                                       | <dl< td=""><td><dl< td=""><td>36</td><td>36</td><td>135</td><td>5</td><td>38</td><td>37</td><td>135</td><td>41</td><td>12</td><td>4</td><td>4</td><td>3.28</td><td>2.96</td></dl<></td></dl<>                                                       | <dl< td=""><td>36</td><td>36</td><td>135</td><td>5</td><td>38</td><td>37</td><td>135</td><td>41</td><td>12</td><td>4</td><td>4</td><td>3.28</td><td>2.96</td></dl<>                                                       | 36                                    | 36                              | 135                           | 5        | 38                                                                                                                                              | 37                   | 135                                      | 41      | 12                                                                                | 4      | 4                                           | 3.28            | 2.96             |
|                      |      |                     |       |          |           |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                           |                                       |                                 |                               |          |                                                                                                                                                 |                      |                                          |         |                                                                                   |        |                                             |                 |                  |
|                      |      |                     |       |          |           |                                                                                                                                                                                                                                                                               | Т                                                                                                                                                                                                                                                   | able 5 DS1 F                                                                                                                                                                                                              | Physical and                          | Mineral W                       | ater Qualit                   | ty Summa | ry Statistic                                                                                                                                    | 5                    |                                          |         |                                                                                   |        |                                             |                 |                  |
|                      | Temp | Dissolved<br>Oxygen | EC    | рН       | Turbidity | TSS                                                                                                                                                                                                                                                                           | Hydroxide<br>Alkalinity<br>as CaCO3                                                                                                                                                                                                                 | Carbonate<br>Alkalinity as<br>CaCO3                                                                                                                                                                                       | Bicarbonate<br>Alkalinity as<br>CaCO3 | Total<br>Alkalinity<br>as CaCO3 | Total<br>Hardness<br>as CaCO3 | Chloride | Dissolved<br>Sulfur as S                                                                                                                        | Total<br>Sulfur as S | Sulfate<br>as SO4 -<br>Turbidim<br>etric | Calcium | Magnesium                                                                         | Sodium | Potassium                                   | Total<br>Anions | Total<br>Cations |
|                      | °C   | % sat               | µS/cm | pH Units | NTU       | mg/L                                                                                                                                                                                                                                                                          | mg/L                                                                                                                                                                                                                                                | mg/L                                                                                                                                                                                                                      | mg/L                                  | mg/L                            | mg/L                          | mg/L     | mg/L                                                                                                                                            | mg/L                 | mg/L                                     | mg/L    | mg/L                                                                              | mg/L   | mg/L                                        | meq/L           | meq/L            |
| Detection limit (DL) | NA   | NA                  | NA    | NA       | NA        | 5                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                         | 1                                     | 1                               | 1                             | 1        | 1                                                                                                                                               | 1                    | 1                                        | 1       | 1                                                                                 | 1      | 1                                           | 0.01            | 0.01             |
| Sample size (n)      | 11   | 6                   | 10    | 10       | 1         | 12                                                                                                                                                                                                                                                                            | 16                                                                                                                                                                                                                                                  | 16                                                                                                                                                                                                                        | 16                                    | 16                              | 15                            | 16       | 16                                                                                                                                              | 15                   | 16                                       | 16      | 16                                                                                | 16     | 16                                          | 16              | 16               |
| n > DL               | 11   | 6                   | 10    | 10       | 1         | 2                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                         | 16                                    | 16                              | 15                            | 16       | 16                                                                                                                                              | 15                   | 16                                       | 16      | 16                                                                                | 16     | 16                                          | 16              | 16               |
| Min                  | 9.9  | 82.5                | 263   | 5.54     | -         | 6                                                                                                                                                                                                                                                                             | <dl< td=""><td><dl< td=""><td>7</td><td>7</td><td>50</td><td>3</td><td>13</td><td>14</td><td>39</td><td>15</td><td>3</td><td>3</td><td>2</td><td>1.12</td><td>1.18</td></dl<></td></dl<>                                                            | <dl< td=""><td>7</td><td>7</td><td>50</td><td>3</td><td>13</td><td>14</td><td>39</td><td>15</td><td>3</td><td>3</td><td>2</td><td>1.12</td><td>1.18</td></dl<>                                                            | 7                                     | 7                               | 50                            | 3        | 13                                                                                                                                              | 14                   | 39                                       | 15      | 3                                                                                 | 3      | 2                                           | 1.12            | 1.18             |
| Median               | 16.8 | 87.9                | 293.5 | 6.74     | -         | -                                                                                                                                                                                                                                                                             | <dl< td=""><td><dl< td=""><td>19.0</td><td>19.0</td><td>114.0</td><td>4.0</td><td>31.5</td><td>31.0</td><td>94.5</td><td>29.5</td><td>10.0</td><td>3.5</td><td>3.0</td><td>2.53</td><td>2.52</td></dl<></td></dl<>                                  | <dl< td=""><td>19.0</td><td>19.0</td><td>114.0</td><td>4.0</td><td>31.5</td><td>31.0</td><td>94.5</td><td>29.5</td><td>10.0</td><td>3.5</td><td>3.0</td><td>2.53</td><td>2.52</td></dl<>                                  | 19.0                                  | 19.0                            | 114.0                         | 4.0      | 31.5                                                                                                                                            | 31.0                 | 94.5                                     | 29.5    | 10.0                                                                              | 3.5    | 3.0                                         | 2.53            | 2.52             |
| Mean                 | 16.2 | 89.3                | 297.0 | 6.66     | -         | -                                                                                                                                                                                                                                                                             | <dl< td=""><td><dl< td=""><td>19.6</td><td>19.6</td><td>104.2</td><td>4.1</td><td>29.0</td><td>29.0</td><td>87.0</td><td>28.0</td><td>8.7</td><td>3.5</td><td>3.2</td><td>2.32</td><td>2.35</td></dl<></td></dl<>                                   | <dl< td=""><td>19.6</td><td>19.6</td><td>104.2</td><td>4.1</td><td>29.0</td><td>29.0</td><td>87.0</td><td>28.0</td><td>8.7</td><td>3.5</td><td>3.2</td><td>2.32</td><td>2.35</td></dl<>                                   | 19.6                                  | 19.6                            | 104.2                         | 4.1      | 29.0                                                                                                                                            | 29.0                 | 87.0                                     | 28.0    | 8.7                                                                               | 3.5    | 3.2                                         | 2.32            | 2.35             |
| SD                   | 3.5  | 7.0                 | 27.7  | 0.44     | -         | -                                                                                                                                                                                                                                                                             | <dl< td=""><td><dl< td=""><td>7.9</td><td>7.9</td><td>26.4</td><td>1.2</td><td>7.8</td><td>7.7</td><td>24.3</td><td>7.1</td><td>3.0</td><td>0.5</td><td>0.8</td><td>0.58</td><td>0.55</td></dl<></td></dl<>                                         | <dl< td=""><td>7.9</td><td>7.9</td><td>26.4</td><td>1.2</td><td>7.8</td><td>7.7</td><td>24.3</td><td>7.1</td><td>3.0</td><td>0.5</td><td>0.8</td><td>0.58</td><td>0.55</td></dl<>                                         | 7.9                                   | 7.9                             | 26.4                          | 1.2      | 7.8                                                                                                                                             | 7.7                  | 24.3                                     | 7.1     | 3.0                                                                               | 0.5    | 0.8                                         | 0.58            | 0.55             |
| 80th percentile      | 19.6 | 92.0                | 309.6 | 6.97     | -         | -                                                                                                                                                                                                                                                                             | <dl< td=""><td><dl< td=""><td>26.0</td><td>26.0</td><td>127.2</td><td>4.0</td><td>35.0</td><td>34.2</td><td>108.0</td><td>33.0</td><td>11.0</td><td>4.0</td><td>4.0</td><td>2.79</td><td>2.80</td></dl<></td></dl<>                                 | <dl< td=""><td>26.0</td><td>26.0</td><td>127.2</td><td>4.0</td><td>35.0</td><td>34.2</td><td>108.0</td><td>33.0</td><td>11.0</td><td>4.0</td><td>4.0</td><td>2.79</td><td>2.80</td></dl<>                                 | 26.0                                  | 26.0                            | 127.2                         | 4.0      | 35.0                                                                                                                                            | 34.2                 | 108.0                                    | 33.0    | 11.0                                                                              | 4.0    | 4.0                                         | 2.79            | 2.80             |
| Max                  | 20.9 | 101.6               | 358   | 7.13     | 12.5      | 11                                                                                                                                                                                                                                                                            | <dl< td=""><td><dl< td=""><td>37</td><td>37</td><td>129</td><td>8</td><td>38</td><td>42</td><td>119</td><td>40</td><td>13</td><td>4</td><td>4</td><td>2.90</td><td>2.86</td></dl<></td></dl<>                                                       | <dl< td=""><td>37</td><td>37</td><td>129</td><td>8</td><td>38</td><td>42</td><td>119</td><td>40</td><td>13</td><td>4</td><td>4</td><td>2.90</td><td>2.86</td></dl<>                                                       | 37                                    | 37                              | 129                           | 8        | 38                                                                                                                                              | 42                   | 119                                      | 40      | 13                                                                                | 4      | 4                                           | 2.90            | 2.86             |

|                      |      |                     |       |          |           |      | T                                                                                                                                                                                                                   | able 6 DS2 P                                                                                                                                                                              | hysical and                           | Mineral W                       | ater Qualit                   | y Summa  | ry Statistics            | 5                    |                                          |         |           |        |           |                 |                  |
|----------------------|------|---------------------|-------|----------|-----------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------|-------------------------------|----------|--------------------------|----------------------|------------------------------------------|---------|-----------|--------|-----------|-----------------|------------------|
|                      | Temp | Dissolved<br>Oxygen | EC    | рН       | Turbidity | TSS  | Hydroxide<br>Alkalinity<br>as CaCO3                                                                                                                                                                                 | Carbonate<br>Alkalinity as<br>CaCO3                                                                                                                                                       | Bicarbonate<br>Alkalinity as<br>CaCO3 | Total<br>Alkalinity<br>as CaCO3 | Total<br>Hardness<br>as CaCO3 | Chloride | Dissolved<br>Sulfur as S | Total<br>Sulfur as S | Sulfate<br>as SO4 -<br>Turbidim<br>etric | Calcium | Magnesium | Sodium | Potassium | Total<br>Anions | Total<br>Cations |
|                      | °C   | % sat               | µS/cm | pH Units | NTU       | mg/L | mg/L                                                                                                                                                                                                                | mg/L                                                                                                                                                                                      | mg/L                                  | mg/L                            | mg/L                          | mg/L     | mg/L                     | mg/L                 | mg/L                                     | mg/L    | mg/L      | mg/L   | mg/L      | meq/L           | meq/L            |
| Detection limit (DL) | NA   | NA                  | NA    | NA       | NA        | 5    | 1                                                                                                                                                                                                                   | 1                                                                                                                                                                                         | 1                                     | 1                               | 1                             | 1        | 1                        | 1                    | 1                                        | 1       | 1         | 1      | 1         | 0.01            | 0.01             |
| Sample size (n)      | 11   | 6                   | 10    | 10       | 1         | 12   | 16                                                                                                                                                                                                                  | 16                                                                                                                                                                                        | 16                                    | 16                              | 15                            | 16       | 16                       | 15                   | 16                                       | 16      | 16        | 16     | 16        | 16              | 16               |
| n > DL               | 11   | 6                   | 10    | 10       | 1         | 1    | 0                                                                                                                                                                                                                   | 0                                                                                                                                                                                         | 16                                    | 16                              | 15                            | 16       | 16                       | 15                   | 16                                       | 16      | 16        | 16     | 16        | 16              | 16               |
| Min                  | 8.5  | 79.8                | 197   | 5.60     | -         | -    | <dl< td=""><td><dl< td=""><td>7</td><td>7</td><td>40</td><td>3</td><td>7</td><td>11</td><td>28</td><td>11</td><td>3</td><td>2</td><td>1</td><td>0.86</td><td>0.93</td></dl<></td></dl<>                             | <dl< td=""><td>7</td><td>7</td><td>40</td><td>3</td><td>7</td><td>11</td><td>28</td><td>11</td><td>3</td><td>2</td><td>1</td><td>0.86</td><td>0.93</td></dl<>                             | 7                                     | 7                               | 40                            | 3        | 7                        | 11                   | 28                                       | 11      | 3         | 2      | 1         | 0.86            | 0.93             |
| Median               | 16.7 | 87.3                | 276.0 | 6.84     | -         | -    | <dl< td=""><td><dl< td=""><td>16.0</td><td>16.0</td><td>104.0</td><td>4.0</td><td>29.0</td><td>28.0</td><td>86.0</td><td>28.0</td><td>9.0</td><td>3.0</td><td>3.0</td><td>2.36</td><td>2.36</td></dl<></td></dl<>   | <dl< td=""><td>16.0</td><td>16.0</td><td>104.0</td><td>4.0</td><td>29.0</td><td>28.0</td><td>86.0</td><td>28.0</td><td>9.0</td><td>3.0</td><td>3.0</td><td>2.36</td><td>2.36</td></dl<>   | 16.0                                  | 16.0                            | 104.0                         | 4.0      | 29.0                     | 28.0                 | 86.0                                     | 28.0    | 9.0       | 3.0    | 3.0       | 2.36            | 2.36             |
| Mean                 | 15.5 | 88.3                | 268.6 | 6.71     | -         | -    | <dl< td=""><td><dl< td=""><td>17.3</td><td>17.3</td><td>95.2</td><td>4.1</td><td>26.3</td><td>26.5</td><td>79.2</td><td>25.3</td><td>8.1</td><td>3.1</td><td>2.9</td><td>2.11</td><td>2.13</td></dl<></td></dl<>    | <dl< td=""><td>17.3</td><td>17.3</td><td>95.2</td><td>4.1</td><td>26.3</td><td>26.5</td><td>79.2</td><td>25.3</td><td>8.1</td><td>3.1</td><td>2.9</td><td>2.11</td><td>2.13</td></dl<>    | 17.3                                  | 17.3                            | 95.2                          | 4.1      | 26.3                     | 26.5                 | 79.2                                     | 25.3    | 8.1       | 3.1    | 2.9       | 2.11            | 2.13             |
| SD                   | 4.0  | 7.1                 | 32.4  | 0.43     | -         | -    | <dl< td=""><td><dl< td=""><td>7.6</td><td>7.6</td><td>29.5</td><td>1.2</td><td>8.5</td><td>8.2</td><td>25.7</td><td>7.5</td><td>3.0</td><td>0.6</td><td>1.0</td><td>0.60</td><td>0.60</td></dl<></td></dl<>         | <dl< td=""><td>7.6</td><td>7.6</td><td>29.5</td><td>1.2</td><td>8.5</td><td>8.2</td><td>25.7</td><td>7.5</td><td>3.0</td><td>0.6</td><td>1.0</td><td>0.60</td><td>0.60</td></dl<>         | 7.6                                   | 7.6                             | 29.5                          | 1.2      | 8.5                      | 8.2                  | 25.7                                     | 7.5     | 3.0       | 0.6    | 1.0       | 0.60            | 0.60             |
| 80th percentile      | 19.2 | 92.3                | 288.0 | 6.99     | -         | -    | <dl< td=""><td><dl< td=""><td>23.0</td><td>23.0</td><td>119.2</td><td>4.0</td><td>33.0</td><td>32.2</td><td>100.0</td><td>30.0</td><td>10.0</td><td>4.0</td><td>4.0</td><td>2.55</td><td>2.66</td></dl<></td></dl<> | <dl< td=""><td>23.0</td><td>23.0</td><td>119.2</td><td>4.0</td><td>33.0</td><td>32.2</td><td>100.0</td><td>30.0</td><td>10.0</td><td>4.0</td><td>4.0</td><td>2.55</td><td>2.66</td></dl<> | 23.0                                  | 23.0                            | 119.2                         | 4.0      | 33.0                     | 32.2                 | 100.0                                    | 30.0    | 10.0      | 4.0    | 4.0       | 2.55            | 2.66             |
| Max                  | 20.4 | 99.8                | 312   | 7.06     | 3.9       | 6    | <dl< td=""><td><dl< td=""><td>35</td><td>35</td><td>124</td><td>8</td><td>35</td><td>40</td><td>111</td><td>37</td><td>12</td><td>4</td><td>4</td><td>2.70</td><td>2.69</td></dl<></td></dl<>                       | <dl< td=""><td>35</td><td>35</td><td>124</td><td>8</td><td>35</td><td>40</td><td>111</td><td>37</td><td>12</td><td>4</td><td>4</td><td>2.70</td><td>2.69</td></dl<>                       | 35                                    | 35                              | 124                           | 8        | 35                       | 40                   | 111                                      | 37      | 12        | 4      | 4         | 2.70            | 2.69             |

|                      |      |                     |       |          |           |      | т                                                                                                                                                                                                                  | able 7 DS3 F                                                                                                                                                                             | hysical and                           | Mineral W                       | ater Qualit                   | y Summa  | ry Statistics            | 6                    |                                          |         |           |        |           |                 |                  |
|----------------------|------|---------------------|-------|----------|-----------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------|-------------------------------|----------|--------------------------|----------------------|------------------------------------------|---------|-----------|--------|-----------|-----------------|------------------|
|                      | Temp | Dissolved<br>Oxygen | EC    | рН       | Turbidity | TSS  | Hydroxide<br>Alkalinity<br>as CaCO3                                                                                                                                                                                | Carbonate<br>Alkalinity as<br>CaCO3                                                                                                                                                      | Bicarbonate<br>Alkalinity as<br>CaCO3 | Total<br>Alkalinity<br>as CaCO3 | Total<br>Hardness<br>as CaCO3 | Chloride | Dissolved<br>Sulfur as S | Total<br>Sulfur as S | Sulfate<br>as SO4 -<br>Turbidim<br>etric | Calcium | Magnesium | Sodium | Potassium | Total<br>Anions | Total<br>Cations |
|                      | °C   | % sat               | µS/cm | pH Units | NTU       | mg/L | mg/L                                                                                                                                                                                                               | mg/L                                                                                                                                                                                     | mg/L                                  | mg/L                            | mg/L                          | mg/L     | mg/L                     | mg/L                 | mg/L                                     | mg/L    | mg/L      | mg/L   | mg/L      | meq/L           | meq/L            |
| Detection limit (DL) | NA   | NA                  | NA    | NA       | NA        | 5    | 1                                                                                                                                                                                                                  | 1                                                                                                                                                                                        | 1                                     | 1                               | 1                             | 1        | 1                        | 1                    | 1                                        | 1       | 1         | 1      | 1         | 0.01            | 0.01             |
| Sample size (n)      | 11   | 6                   | 10    | 10       | 1         | 12   | 16                                                                                                                                                                                                                 | 16                                                                                                                                                                                       | 16                                    | 16                              | 15                            | 16       | 16                       | 15                   | 16                                       | 16      | 16        | 16     | 16        | 16              | 16               |
| n > DL               | 11   | 6                   | 10    | 10       | 1         | 1    | 0                                                                                                                                                                                                                  | 0                                                                                                                                                                                        | 16                                    | 16                              | 15                            | 16       | 16                       | 15                   | 16                                       | 16      | 16        | 16     | 16        | 16              | 16               |
| Min                  | 7.2  | 81.8                | 195   | 5.69     | -         | -    | <dl< td=""><td><dl< td=""><td>6</td><td>6</td><td>31</td><td>3</td><td>10</td><td>10</td><td>28</td><td>9</td><td>2</td><td>2</td><td>1</td><td>0.87</td><td>0.77</td></dl<></td></dl<>                            | <dl< td=""><td>6</td><td>6</td><td>31</td><td>3</td><td>10</td><td>10</td><td>28</td><td>9</td><td>2</td><td>2</td><td>1</td><td>0.87</td><td>0.77</td></dl<>                            | 6                                     | 6                               | 31                            | 3        | 10                       | 10                   | 28                                       | 9       | 2         | 2      | 1         | 0.87            | 0.77             |
| Median               | 14.4 | 91.4                | 256.5 | 6.82     | -         | -    | <dl< td=""><td><dl< td=""><td>15.5</td><td>15.5</td><td>100.0</td><td>4.0</td><td>28.5</td><td>28.0</td><td>82.0</td><td>26.0</td><td>8.5</td><td>3.0</td><td>3.0</td><td>2.26</td><td>2.20</td></dl<></td></dl<>  | <dl< td=""><td>15.5</td><td>15.5</td><td>100.0</td><td>4.0</td><td>28.5</td><td>28.0</td><td>82.0</td><td>26.0</td><td>8.5</td><td>3.0</td><td>3.0</td><td>2.26</td><td>2.20</td></dl<>  | 15.5                                  | 15.5                            | 100.0                         | 4.0      | 28.5                     | 28.0                 | 82.0                                     | 26.0    | 8.5       | 3.0    | 3.0       | 2.26            | 2.20             |
| Mean                 | 14.6 | 89.5                | 255.1 | 6.73     | -         | -    | <dl< td=""><td><dl< td=""><td>16.9</td><td>16.9</td><td>91.4</td><td>4.1</td><td>25.7</td><td>26.7</td><td>77.8</td><td>24.4</td><td>7.6</td><td>3.1</td><td>2.7</td><td>2.07</td><td>2.05</td></dl<></td></dl<>   | <dl< td=""><td>16.9</td><td>16.9</td><td>91.4</td><td>4.1</td><td>25.7</td><td>26.7</td><td>77.8</td><td>24.4</td><td>7.6</td><td>3.1</td><td>2.7</td><td>2.07</td><td>2.05</td></dl<>   | 16.9                                  | 16.9                            | 91.4                          | 4.1      | 25.7                     | 26.7                 | 77.8                                     | 24.4    | 7.6       | 3.1    | 2.7       | 2.07            | 2.05             |
| SD                   | 4.5  | 5.4                 | 31.7  | 0.45     | -         | -    | <dl< td=""><td><dl< td=""><td>7.1</td><td>7.1</td><td>24.9</td><td>1.3</td><td>7.4</td><td>6.9</td><td>23.2</td><td>6.3</td><td>2.8</td><td>0.6</td><td>0.7</td><td>0.51</td><td>0.51</td></dl<></td></dl<>        | <dl< td=""><td>7.1</td><td>7.1</td><td>24.9</td><td>1.3</td><td>7.4</td><td>6.9</td><td>23.2</td><td>6.3</td><td>2.8</td><td>0.6</td><td>0.7</td><td>0.51</td><td>0.51</td></dl<>        | 7.1                                   | 7.1                             | 24.9                          | 1.3      | 7.4                      | 6.9                  | 23.2                                     | 6.3     | 2.8       | 0.6    | 0.7       | 0.51            | 0.51             |
| 80th percentile      | 19.4 | 92.7                | 265.4 | 7.00     | -         | -    | <dl< td=""><td><dl< td=""><td>22.0</td><td>22.0</td><td>108.4</td><td>4.0</td><td>30.0</td><td>31.0</td><td>98.0</td><td>30.0</td><td>10.0</td><td>4.0</td><td>3.0</td><td>2.43</td><td>2.41</td></dl<></td></dl<> | <dl< td=""><td>22.0</td><td>22.0</td><td>108.4</td><td>4.0</td><td>30.0</td><td>31.0</td><td>98.0</td><td>30.0</td><td>10.0</td><td>4.0</td><td>3.0</td><td>2.43</td><td>2.41</td></dl<> | 22.0                                  | 22.0                            | 108.4                         | 4.0      | 30.0                     | 31.0                 | 98.0                                     | 30.0    | 10.0      | 4.0    | 3.0       | 2.43            | 2.41             |
| Max                  | 20.0 | 95.5                | 316   | 7.37     | 5.2       | 9    | <dl< td=""><td><dl< td=""><td>33</td><td>33</td><td>118</td><td>8</td><td>34</td><td>40</td><td>112</td><td>31</td><td>11</td><td>4</td><td>4</td><td>2.68</td><td>2.62</td></dl<></td></dl<>                      | <dl< td=""><td>33</td><td>33</td><td>118</td><td>8</td><td>34</td><td>40</td><td>112</td><td>31</td><td>11</td><td>4</td><td>4</td><td>2.68</td><td>2.62</td></dl<>                      | 33                                    | 33                              | 118                           | 8        | 34                       | 40                   | 112                                      | 31      | 11        | 4      | 4         | 2.68            | 2.62             |

|                      |      |                     |       |          |           |                                                                                                                                                                                                                                            | Т                                                                                                                                                                                                                | able 8 DS4 F                                                                                                                                                                           | Physical and                          | Mineral W                       | ater Qualit                   | y Summa  | ry Statistics            | 5                    |                                          |         |           |        |           |                 |                  |
|----------------------|------|---------------------|-------|----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------|-------------------------------|----------|--------------------------|----------------------|------------------------------------------|---------|-----------|--------|-----------|-----------------|------------------|
|                      | Temp | Dissolved<br>Oxygen | EC    | рН       | Turbidity | TSS                                                                                                                                                                                                                                        | Hydroxide<br>Alkalinity<br>as CaCO3                                                                                                                                                                              | Carbonate<br>Alkalinity as<br>CaCO3                                                                                                                                                    | Bicarbonate<br>Alkalinity as<br>CaCO3 | Total<br>Alkalinity<br>as CaCO3 | Total<br>Hardness<br>as CaCO3 | Chloride | Dissolved<br>Sulfur as S | Total<br>Sulfur as S | Sulfate<br>as SO4 -<br>Turbidim<br>etric | Calcium | Magnesium | Sodium | Potassium | Total<br>Anions | Total<br>Cations |
|                      | °C   | % sat               | µS/cm | pH Units | NTU       | mg/L                                                                                                                                                                                                                                       | mg/L                                                                                                                                                                                                             | mg/L                                                                                                                                                                                   | mg/L                                  | mg/L                            | mg/L                          | mg/L     | mg/L                     | mg/L                 | mg/L                                     | mg/L    | mg/L      | mg/L   | mg/L      | meq/L           | meq/L            |
| Detection limit (DL) | NA   | NA                  | NA    | NA       | NA        | 5                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                | 1                                                                                                                                                                                      | 1                                     | 1                               | 1                             | 1        | 1                        | 1                    | 1                                        | 1       | 1         | 1      | 1         | 0.01            | 0.01             |
| Sample size (n)      | 6    | 4                   | 5     | 5        | 1         | 6                                                                                                                                                                                                                                          | 9                                                                                                                                                                                                                | 9                                                                                                                                                                                      | 9                                     | 9                               | 9                             | 9        | 9                        | 9                    | 9                                        | 9       | 9         | 9      | 9         | 9               | 9                |
| n > DL               | 6    | 4                   | 5     | 5        | 1         | 0                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                | 0                                                                                                                                                                                      | 9                                     | 9                               | 9                             | 9        | 9                        | 9                    | 9                                        | 9       | 9         | 9      | 9         | 9               | 9                |
| Min                  | 7.6  | 86.8                | 198   | 5.77     | -         | <dl< td=""><td><dl< td=""><td><dl< td=""><td>6</td><td>6</td><td>28</td><td>3</td><td>10</td><td>10</td><td>29</td><td>8</td><td>2</td><td>2</td><td>1</td><td>0.89</td><td>0.72</td></dl<></td></dl<></td></dl<>                          | <dl< td=""><td><dl< td=""><td>6</td><td>6</td><td>28</td><td>3</td><td>10</td><td>10</td><td>29</td><td>8</td><td>2</td><td>2</td><td>1</td><td>0.89</td><td>0.72</td></dl<></td></dl<>                          | <dl< td=""><td>6</td><td>6</td><td>28</td><td>3</td><td>10</td><td>10</td><td>29</td><td>8</td><td>2</td><td>2</td><td>1</td><td>0.89</td><td>0.72</td></dl<>                          | 6                                     | 6                               | 28                            | 3        | 10                       | 10                   | 29                                       | 8       | 2         | 2      | 1         | 0.89            | 0.72             |
| Median               | 14.6 | 89.8                | 227.0 | 7.01     | -         | <dl< td=""><td><dl< td=""><td><dl< td=""><td>13.0</td><td>13.0</td><td>91.0</td><td>4.0</td><td>27.0</td><td>27.0</td><td>79.0</td><td>25.0</td><td>8.0</td><td>3.0</td><td>3.0</td><td>2.07</td><td>1.99</td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td>13.0</td><td>13.0</td><td>91.0</td><td>4.0</td><td>27.0</td><td>27.0</td><td>79.0</td><td>25.0</td><td>8.0</td><td>3.0</td><td>3.0</td><td>2.07</td><td>1.99</td></dl<></td></dl<> | <dl< td=""><td>13.0</td><td>13.0</td><td>91.0</td><td>4.0</td><td>27.0</td><td>27.0</td><td>79.0</td><td>25.0</td><td>8.0</td><td>3.0</td><td>3.0</td><td>2.07</td><td>1.99</td></dl<> | 13.0                                  | 13.0                            | 91.0                          | 4.0      | 27.0                     | 27.0                 | 79.0                                     | 25.0    | 8.0       | 3.0    | 3.0       | 2.07            | 1.99             |
| Mean                 | 14.3 | 91.3                | 233.2 | 6.64     | -         | <dl< td=""><td><dl< td=""><td><dl< td=""><td>13.8</td><td>13.8</td><td>85.3</td><td>4.0</td><td>24.4</td><td>24.6</td><td>74.1</td><td>23.0</td><td>6.8</td><td>2.9</td><td>2.7</td><td>1.93</td><td>1.90</td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td>13.8</td><td>13.8</td><td>85.3</td><td>4.0</td><td>24.4</td><td>24.6</td><td>74.1</td><td>23.0</td><td>6.8</td><td>2.9</td><td>2.7</td><td>1.93</td><td>1.90</td></dl<></td></dl<> | <dl< td=""><td>13.8</td><td>13.8</td><td>85.3</td><td>4.0</td><td>24.4</td><td>24.6</td><td>74.1</td><td>23.0</td><td>6.8</td><td>2.9</td><td>2.7</td><td>1.93</td><td>1.90</td></dl<> | 13.8                                  | 13.8                            | 85.3                          | 4.0      | 24.4                     | 24.6                 | 74.1                                     | 23.0    | 6.8       | 2.9    | 2.7       | 1.93            | 1.90             |
| SD                   | 4.7  | 5.4                 | 25.2  | 0.58     | -         | <dl< td=""><td><dl< td=""><td><dl< td=""><td>4.3</td><td>4.3</td><td>22.2</td><td>0.9</td><td>6.0</td><td>6.4</td><td>19.8</td><td>6.1</td><td>2.2</td><td>0.8</td><td>0.9</td><td>0.43</td><td>0.47</td></dl<></td></dl<></td></dl<>      | <dl< td=""><td><dl< td=""><td>4.3</td><td>4.3</td><td>22.2</td><td>0.9</td><td>6.0</td><td>6.4</td><td>19.8</td><td>6.1</td><td>2.2</td><td>0.8</td><td>0.9</td><td>0.43</td><td>0.47</td></dl<></td></dl<>      | <dl< td=""><td>4.3</td><td>4.3</td><td>22.2</td><td>0.9</td><td>6.0</td><td>6.4</td><td>19.8</td><td>6.1</td><td>2.2</td><td>0.8</td><td>0.9</td><td>0.43</td><td>0.47</td></dl<>      | 4.3                                   | 4.3                             | 22.2                          | 0.9      | 6.0                      | 6.4                  | 19.8                                     | 6.1     | 2.2       | 0.8    | 0.9       | 0.43            | 0.47             |
| 80th percentile      | 18.3 | 94.4                | 255.4 | 7.04     | -         | <dl< td=""><td><dl< td=""><td><dl< td=""><td>16.0</td><td>16.0</td><td>98.4</td><td>4.0</td><td>27.4</td><td>28.4</td><td>88.4</td><td>25.4</td><td>8.0</td><td>3.4</td><td>3.0</td><td>2.17</td><td>2.21</td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td>16.0</td><td>16.0</td><td>98.4</td><td>4.0</td><td>27.4</td><td>28.4</td><td>88.4</td><td>25.4</td><td>8.0</td><td>3.4</td><td>3.0</td><td>2.17</td><td>2.21</td></dl<></td></dl<> | <dl< td=""><td>16.0</td><td>16.0</td><td>98.4</td><td>4.0</td><td>27.4</td><td>28.4</td><td>88.4</td><td>25.4</td><td>8.0</td><td>3.4</td><td>3.0</td><td>2.17</td><td>2.21</td></dl<> | 16.0                                  | 16.0                            | 98.4                          | 4.0      | 27.4                     | 28.4                 | 88.4                                     | 25.4    | 8.0       | 3.4    | 3.0       | 2.17            | 2.21             |
| Max                  | 20.2 | 98.9                | 261   | 7.08     | 3.4       | <dl< td=""><td><dl< td=""><td><dl< td=""><td>22</td><td>22</td><td>100</td><td>6</td><td>30</td><td>30</td><td>94</td><td>30</td><td>9</td><td>4</td><td>4</td><td>2.31</td><td>2.24</td></dl<></td></dl<></td></dl<>                      | <dl< td=""><td><dl< td=""><td>22</td><td>22</td><td>100</td><td>6</td><td>30</td><td>30</td><td>94</td><td>30</td><td>9</td><td>4</td><td>4</td><td>2.31</td><td>2.24</td></dl<></td></dl<>                      | <dl< td=""><td>22</td><td>22</td><td>100</td><td>6</td><td>30</td><td>30</td><td>94</td><td>30</td><td>9</td><td>4</td><td>4</td><td>2.31</td><td>2.24</td></dl<>                      | 22                                    | 22                              | 100                           | 6        | 30                       | 30                   | 94                                       | 30      | 9         | 4      | 4         | 2.31            | 2.24             |



Dissolved Oxygen 106.0 101.0 Concentration (% saturation) US1 96.0 US2 DS1 91.0 DS2 DS3 86.0 DS4 81.0 76.0 May-17 Jul-17 Aug-17 Oct-17 Dec-17 Feb-18 Apr-18 Jun-18 Aug-18 Sample month

Electrical Conductivity



Sample month





Total Hardness as CaCO3





Dissolved Sulfur as S

















Sample month



**Total Cations** 











Page 22















2

0









## **3.3 Nutrients & Organics Water Quality Monitoring Data**

The nutrients and organics water quality results for each sampling location and event are provided below in Site Summary **Tables 9 to 14**, Control Charts, and Box Plots:

- Nitrite Detection Limit (DL < 0.01mg/L), Oil and Grease (DL < 5 mg/L), Total Phenol (DL < 0.05mg/L) and Total Cyanide (DL < 0.004mg/L) concentrations were all below DL for all sites and for all sampling times to date, and are not plotted as Control Graphs or Box Plots.
- Fluoride concentrations at all sites were below Detection Limit of 0.1mg/L apart from site DS2.
- Total Phosphorus (TP) concentrations at sites US2 and DS3 were below detection.
- TKN was below detection for all surveys at sites DS2 and DS4.
- Total Nitrogen (TN) was below detection for all surveys at sites DS2 and DS4.
- TP, TKN, and TN at the sites nominated above are graphed at half Detection Limit values in the Control Graphs and Box Plots.

|                      |         |                                                                                                                                                                                                                                                                                    |         |                    | Table 9                                                                                                                                                                                                                        | US1 Nutrie                    | ent and Or        | ganic Water         | Quality Su         | mmary S | tatistics          |         |                            |                                                                                                 |                                                                       |                                             |                   |
|----------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------|---------------------|--------------------|---------|--------------------|---------|----------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------|-------------------|
|                      |         |                                                                                                                                                                                                                                                                                    | _       | Nu                 | trients                                                                                                                                                                                                                        |                               |                   |                     | Disso              | olved   |                    | Total   |                            | Orga                                                                                            | anics                                                                 | М                                           | isc               |
|                      | Ammonia | Nitrite                                                                                                                                                                                                                                                                            | Nitrate | Nitrogen<br>Oxides | Organic<br>Nitrogen                                                                                                                                                                                                            | Total<br>Kjeldahl<br>Nitrogen | Total<br>Nitrogen | Total<br>Phosphorus | Silicon as<br>SiO2 | Silicon | Silicon as<br>SiO2 | Silicon | Total<br>Organic<br>Carbon | Oil &<br>Grease                                                                                 | Phenols                                                               | Total<br>Cyanide                            | Fluoride          |
|                      | mg/L    | mg/L                                                                                                                                                                                                                                                                               | mg/L    | mg/L               | mg/L                                                                                                                                                                                                                           | mg/L                          | mg/L              | mg/L                | mg/L               | mg/L    | mg/L               | mg/L    | mg/L                       | mg/L                                                                                            | mg/L                                                                  | mg/L                                        | mg/L              |
| Detection limit (DL) | 0.01    | 0.01                                                                                                                                                                                                                                                                               | 0.01    | 0.01               | 0.1                                                                                                                                                                                                                            | 0.1                           | 0.1               | 0.01                | 0.1                | 0.05    | 0.1                | 0.05    | 1                          | 5                                                                                               | 0.05                                                                  | 0.004                                       | 0.1               |
| Sample size (n)      | 9       | 9                                                                                                                                                                                                                                                                                  | 9       | 9                  | 0                                                                                                                                                                                                                              | 9                             | 9                 | 9                   | 9                  | 9       | 9                  | 9       | 9                          | 9                                                                                               | 9                                                                     | 9                                           | 9                 |
| n > DL               | 4       | 0                                                                                                                                                                                                                                                                                  | 4       | 4                  | 0                                                                                                                                                                                                                              | 3                             | 3                 | 1                   | 9                  | 9       | 9                  | 9       | 8                          | 0                                                                                               | 0                                                                     | 0                                           | 0                 |
| Min                  | 0.01    | <dl< td=""><td>0.01</td><td>0.01</td><td><dl< td=""><td>0.10</td><td>0.10</td><td>-</td><td>3.9</td><td>1.82</td><td>3.9</td><td>1.82</td><td>1.0</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.01    | 0.01               | <dl< td=""><td>0.10</td><td>0.10</td><td>-</td><td>3.9</td><td>1.82</td><td>3.9</td><td>1.82</td><td>1.0</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.10                          | 0.10              | -                   | 3.9                | 1.82    | 3.9                | 1.82    | 1.0                        | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |
| Median               | 0.01    | <dl< td=""><td>0.01</td><td>0.01</td><td><dl< td=""><td>0.05</td><td>0.05</td><td>-</td><td>4.7</td><td>2.19</td><td>4.9</td><td>2.26</td><td>2.0</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.01    | 0.01               | <dl< td=""><td>0.05</td><td>0.05</td><td>-</td><td>4.7</td><td>2.19</td><td>4.9</td><td>2.26</td><td>2.0</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.05                          | 0.05              | -                   | 4.7                | 2.19    | 4.9                | 2.26    | 2.0                        | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |
| Mean                 | 0.01    | <dl< td=""><td>0.01</td><td>0.01</td><td><dl< td=""><td>0.08</td><td>0.08</td><td>-</td><td>5.0</td><td>2.32</td><td>5.0</td><td>2.32</td><td>1.6</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.01    | 0.01               | <dl< td=""><td>0.08</td><td>0.08</td><td>-</td><td>5.0</td><td>2.32</td><td>5.0</td><td>2.32</td><td>1.6</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.08                          | 0.08              | -                   | 5.0                | 2.32    | 5.0                | 2.32    | 1.6                        | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |
| SD                   | 0.01    | <dl< td=""><td>0.01</td><td>0.01</td><td><dl< td=""><td>0.05</td><td>0.05</td><td>-</td><td>1.0</td><td>0.46</td><td>0.9</td><td>0.39</td><td>0.6</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.01    | 0.01               | <dl< td=""><td>0.05</td><td>0.05</td><td>-</td><td>1.0</td><td>0.46</td><td>0.9</td><td>0.39</td><td>0.6</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.05                          | 0.05              | -                   | 1.0                | 0.46    | 0.9                | 0.39    | 0.6                        | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |
| 80th percentile      | 0.02    | <dl< td=""><td>0.02</td><td>0.02</td><td><dl< td=""><td>0.10</td><td>0.10</td><td>-</td><td>5.6</td><td>2.62</td><td>5.2</td><td>2.40</td><td>2.0</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.02    | 0.02               | <dl< td=""><td>0.10</td><td>0.10</td><td>-</td><td>5.6</td><td>2.62</td><td>5.2</td><td>2.40</td><td>2.0</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.10                          | 0.10              | -                   | 5.6                | 2.62    | 5.2                | 2.40    | 2.0                        | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |
| Max                  | 0.03    | <dl< td=""><td>0.03</td><td>0.03</td><td><dl< td=""><td>0.20</td><td>0.20</td><td>0.02</td><td>6.6</td><td>3.11</td><td>6.9</td><td>3.21</td><td>2.0</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.03    | 0.03               | <dl< td=""><td>0.20</td><td>0.20</td><td>0.02</td><td>6.6</td><td>3.11</td><td>6.9</td><td>3.21</td><td>2.0</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.20                          | 0.20              | 0.02                | 6.6                | 3.11    | 6.9                | 3.21    | 2.0                        | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |

|                      |         |                                                                                                                                                                                                                                                                                                 |         |                    | Table 10                                                                                                                                                                                                                                    | US2 Nutri                     | ent and O         | rganic Water                                                                                                                                                                            | Quality S          | ummary S | Statistics         |         |                            |                                                                                                 |                                                                       |                                             |                   |
|----------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|--------------------|---------|----------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------|-------------------|
|                      |         |                                                                                                                                                                                                                                                                                                 |         | Nu                 | trients                                                                                                                                                                                                                                     |                               |                   |                                                                                                                                                                                         | Diss               | olved    |                    | Total   |                            | Orga                                                                                            | anics                                                                 | м                                           | isc               |
|                      | Ammonia | Nitrite                                                                                                                                                                                                                                                                                         | Nitrate | Nitrogen<br>Oxides | Organic<br>Nitrogen                                                                                                                                                                                                                         | Total<br>Kjeldahl<br>Nitrogen | Total<br>Nitrogen | Total<br>Phosphorus                                                                                                                                                                     | Silicon as<br>SiO2 | Silicon  | Silicon as<br>SiO2 | Silicon | Total<br>Organic<br>Carbon | Oil &<br>Grease                                                                                 | Phenols                                                               | Total<br>Cyanide                            | Fluoride          |
|                      | mg/L    | mg/L                                                                                                                                                                                                                                                                                            | mg/L    | mg/L               | mg/L                                                                                                                                                                                                                                        | mg/L                          | mg/L              | mg/L                                                                                                                                                                                    | mg/L               | mg/L     | mg/L               | mg/L    | mg/L                       | mg/L                                                                                            | mg/L                                                                  | mg/L                                        | mg/L              |
| Detection limit (DL) | 0.01    | 0.01                                                                                                                                                                                                                                                                                            | 0.01    | 0.01               | 0.1                                                                                                                                                                                                                                         | 0.1                           | 0.1               | 0.01                                                                                                                                                                                    | 0.1                | 0.05     | 0.1                | 0.05    | 1                          | 5                                                                                               | 0.05                                                                  | 0.004                                       | 0.1               |
| Sample size (n)      | 9       | 9                                                                                                                                                                                                                                                                                               | 9       | 9                  | 0                                                                                                                                                                                                                                           | 9                             | 9                 | 9                                                                                                                                                                                       | 9                  | 9        | 9                  | 9       | 9                          | 9                                                                                               | 9                                                                     | 9                                           | 9                 |
| n > DL               | 4       | 0                                                                                                                                                                                                                                                                                               | 2       | 2                  | 0                                                                                                                                                                                                                                           | 2                             | 2                 | 0                                                                                                                                                                                       | 9                  | 9        | 9                  | 9       | 3                          | 0                                                                                               | 0                                                                     | 0                                           | 0                 |
| Min                  | 0.01    | <dl< td=""><td>0.01</td><td>0.01</td><td><dl< td=""><td>0.20</td><td>0.20</td><td><dl< td=""><td>5.0</td><td>2.34</td><td>4.8</td><td>2.24</td><td>1.0</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.01    | 0.01               | <dl< td=""><td>0.20</td><td>0.20</td><td><dl< td=""><td>5.0</td><td>2.34</td><td>4.8</td><td>2.24</td><td>1.0</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.20                          | 0.20              | <dl< td=""><td>5.0</td><td>2.34</td><td>4.8</td><td>2.24</td><td>1.0</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 5.0                | 2.34     | 4.8                | 2.24    | 1.0                        | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |
| Median               | 0.01    | <dl< td=""><td>-</td><td>-</td><td><dl< td=""><td>-</td><td>-</td><td><dl< td=""><td>5.7</td><td>2.68</td><td>5.8</td><td>2.64</td><td>0.5</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>             | -       | -                  | <dl< td=""><td>-</td><td>-</td><td><dl< td=""><td>5.7</td><td>2.68</td><td>5.8</td><td>2.64</td><td>0.5</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>       | -                             | -                 | <dl< td=""><td>5.7</td><td>2.68</td><td>5.8</td><td>2.64</td><td>0.5</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 5.7                | 2.68     | 5.8                | 2.64    | 0.5                        | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |
| Mean                 | 0.02    | <dl< td=""><td>-</td><td>-</td><td><dl< td=""><td>-</td><td>-</td><td><dl< td=""><td>5.8</td><td>2.70</td><td>5.7</td><td>2.63</td><td>0.8</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>             | -       | -                  | <dl< td=""><td>-</td><td>-</td><td><dl< td=""><td>5.8</td><td>2.70</td><td>5.7</td><td>2.63</td><td>0.8</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>       | -                             | -                 | <dl< td=""><td>5.8</td><td>2.70</td><td>5.7</td><td>2.63</td><td>0.8</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 5.8                | 2.70     | 5.7                | 2.63    | 0.8                        | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |
| SD                   | 0.03    | <dl< td=""><td>-</td><td>-</td><td><dl< td=""><td>-</td><td>-</td><td><dl< td=""><td>0.7</td><td>0.33</td><td>0.4</td><td>0.19</td><td>0.5</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>             | -       | -                  | <dl< td=""><td>-</td><td>-</td><td><dl< td=""><td>0.7</td><td>0.33</td><td>0.4</td><td>0.19</td><td>0.5</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>       | -                             | -                 | <dl< td=""><td>0.7</td><td>0.33</td><td>0.4</td><td>0.19</td><td>0.5</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.7                | 0.33     | 0.4                | 0.19    | 0.5                        | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |
| 80th percentile      | 0.02    | <dl< td=""><td>-</td><td>-</td><td><dl< td=""><td>-</td><td>-</td><td><dl< td=""><td>6.2</td><td>2.89</td><td>5.9</td><td>2.78</td><td>1.0</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>             | -       | -                  | <dl< td=""><td>-</td><td>-</td><td><dl< td=""><td>6.2</td><td>2.89</td><td>5.9</td><td>2.78</td><td>1.0</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>       | -                             | -                 | <dl< td=""><td>6.2</td><td>2.89</td><td>5.9</td><td>2.78</td><td>1.0</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 6.2                | 2.89     | 5.9                | 2.78    | 1.0                        | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |
| Max                  | 0.11    | <dl< td=""><td>0.04</td><td>0.04</td><td><dl< td=""><td>0.20</td><td>0.20</td><td><dl< td=""><td>7.1</td><td>3.32</td><td>6.4</td><td>2.84</td><td>2.0</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.04    | 0.04               | <dl< td=""><td>0.20</td><td>0.20</td><td><dl< td=""><td>7.1</td><td>3.32</td><td>6.4</td><td>2.84</td><td>2.0</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.20                          | 0.20              | <dl< td=""><td>7.1</td><td>3.32</td><td>6.4</td><td>2.84</td><td>2.0</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 7.1                | 3.32     | 6.4                | 2.84    | 2.0                        | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |

|                      |         |                                                                                                                                                                                                                                                                                    |         |                    | Table 11                                                                                                                                                                                                                       | DS1 Nutri                     | ent and O         | rganic Water        | Quality Su         | ummary S | Statistics         |         |                            |                                                                                                 |                                                                       |                                             |                   |
|----------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------|---------------------|--------------------|----------|--------------------|---------|----------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------|-------------------|
|                      |         |                                                                                                                                                                                                                                                                                    |         | Nu                 | trients                                                                                                                                                                                                                        |                               |                   |                     | Disso              | olved    |                    | Total   |                            | Orga                                                                                            | anics                                                                 | М                                           | isc               |
|                      | Ammonia | Nitrite                                                                                                                                                                                                                                                                            | Nitrate | Nitrogen<br>Oxides | Organic<br>Nitrogen                                                                                                                                                                                                            | Total<br>Kjeldahl<br>Nitrogen | Total<br>Nitrogen | Total<br>Phosphorus | Silicon as<br>SiO2 | Silicon  | Silicon as<br>SiO2 | Silicon | Total<br>Organic<br>Carbon | Oil &<br>Grease                                                                                 | Phenols                                                               | Total<br>Cyanide                            | Fluoride          |
|                      | mg/L    | mg/L                                                                                                                                                                                                                                                                               | mg/L    | mg/L               | mg/L                                                                                                                                                                                                                           | mg/L                          | mg/L              | mg/L                | mg/L               | mg/L     | mg/L               | mg/L    | mg/L                       | mg/L                                                                                            | mg/L                                                                  | mg/L                                        | mg/L              |
| Detection limit (DL) | 0.01    | 0.01                                                                                                                                                                                                                                                                               | 0.01    | 0.01               | 0.1                                                                                                                                                                                                                            | 0.1                           | 0.1               | 0.01                | 0.1                | 0.05     | 0.1                | 0.05    | 1                          | 5                                                                                               | 0.05                                                                  | 0.004                                       | 0.1               |
| Sample size (n)      | 16      | 16                                                                                                                                                                                                                                                                                 | 16      | 16                 | 1                                                                                                                                                                                                                              | 16                            | 16                | 16                  | 16                 | 16       | 15                 | 15      | 16                         | 16                                                                                              | 16                                                                    | 16                                          | 16                |
| n > DL               | 4       | 0                                                                                                                                                                                                                                                                                  | 7       | 7                  | 0                                                                                                                                                                                                                              | 3                             | 3                 | 1                   | 16                 | 16       | 15                 | 15      | 7                          | 0                                                                                               | 0                                                                     | 0                                           | 0                 |
| Min                  | 0.01    | <dl< td=""><td>0.01</td><td>0.01</td><td><dl< td=""><td>0.10</td><td>0.10</td><td>-</td><td>5.2</td><td>2.42</td><td>5.0</td><td>2.35</td><td>1.0</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.01    | 0.01               | <dl< td=""><td>0.10</td><td>0.10</td><td>-</td><td>5.2</td><td>2.42</td><td>5.0</td><td>2.35</td><td>1.0</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.10                          | 0.10              | -                   | 5.2                | 2.42     | 5.0                | 2.35    | 1.0                        | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |
| Median               | 0.01    | <dl< td=""><td>0.01</td><td>0.01</td><td><dl< td=""><td>0.05</td><td>0.05</td><td>-</td><td>5.7</td><td>2.66</td><td>5.8</td><td>2.69</td><td>0.5</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.01    | 0.01               | <dl< td=""><td>0.05</td><td>0.05</td><td>-</td><td>5.7</td><td>2.66</td><td>5.8</td><td>2.69</td><td>0.5</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.05                          | 0.05              | -                   | 5.7                | 2.66     | 5.8                | 2.69    | 0.5                        | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |
| Mean                 | 0.02    | <dl< td=""><td>0.02</td><td>0.02</td><td><dl< td=""><td>0.09</td><td>0.09</td><td>-</td><td>5.8</td><td>2.73</td><td>6.2</td><td>2.88</td><td>0.9</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.02    | 0.02               | <dl< td=""><td>0.09</td><td>0.09</td><td>-</td><td>5.8</td><td>2.73</td><td>6.2</td><td>2.88</td><td>0.9</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.09                          | 0.09              | -                   | 5.8                | 2.73     | 6.2                | 2.88    | 0.9                        | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |
| SD                   | 0.02    | <dl< td=""><td>0.03</td><td>0.03</td><td><dl< td=""><td>0.09</td><td>0.09</td><td>-</td><td>0.6</td><td>0.28</td><td>1.7</td><td>0.80</td><td>0.6</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.03    | 0.03               | <dl< td=""><td>0.09</td><td>0.09</td><td>-</td><td>0.6</td><td>0.28</td><td>1.7</td><td>0.80</td><td>0.6</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.09                          | 0.09              | -                   | 0.6                | 0.28     | 1.7                | 0.80    | 0.6                        | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |
| 80th percentile      | 0.03    | <dl< td=""><td>0.02</td><td>0.02</td><td><dl< td=""><td>0.05</td><td>0.05</td><td>-</td><td>6.4</td><td>2.99</td><td>6.1</td><td>2.80</td><td>1.0</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.02    | 0.02               | <dl< td=""><td>0.05</td><td>0.05</td><td>-</td><td>6.4</td><td>2.99</td><td>6.1</td><td>2.80</td><td>1.0</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.05                          | 0.05              | -                   | 6.4                | 2.99     | 6.1                | 2.80    | 1.0                        | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |
| Max                  | 0.07    | <dl< td=""><td>0.09</td><td>0.09</td><td><dl< td=""><td>0.30</td><td>0.30</td><td>0.1</td><td>7.1</td><td>3.33</td><td>12.2</td><td>5.69</td><td>2.0</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.09    | 0.09               | <dl< td=""><td>0.30</td><td>0.30</td><td>0.1</td><td>7.1</td><td>3.33</td><td>12.2</td><td>5.69</td><td>2.0</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.30                          | 0.30              | 0.1                 | 7.1                | 3.33     | 12.2               | 5.69    | 2.0                        | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |

|                      |         |                                                                                                                                                                                                                                                                      |         |                    | Table 12                                                                                                                                                                                                         | DS2 Nutri                     | ent and O         | rganic Water        | Quality Su         | ummary S | Statistics         |         |                            |                                                                                   |                                                         |                               |          |
|----------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------|---------------------|--------------------|----------|--------------------|---------|----------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------|----------|
|                      |         |                                                                                                                                                                                                                                                                      |         | Nu                 | trients                                                                                                                                                                                                          |                               |                   |                     | Disso              | olved    |                    | Total   |                            | Orga                                                                              | anics                                                   | М                             | isc      |
|                      | Ammonia | Nitrite                                                                                                                                                                                                                                                              | Nitrate | Nitrogen<br>Oxides | Organic<br>Nitrogen                                                                                                                                                                                              | Total<br>Kjeldahl<br>Nitrogen | Total<br>Nitrogen | Total<br>Phosphorus | Silicon as<br>SiO2 | Silicon  | Silicon as<br>SiO2 | Silicon | Total<br>Organic<br>Carbon | Oil &<br>Grease                                                                   | Phenols                                                 | Total<br>Cyanide              | Fluoride |
|                      | mg/L    | mg/L                                                                                                                                                                                                                                                                 | mg/L    | mg/L               | mg/L                                                                                                                                                                                                             | mg/L                          | mg/L              | mg/L                | mg/L               | mg/L     | mg/L               | mg/L    | mg/L                       | mg/L                                                                              | mg/L                                                    | mg/L                          | mg/L     |
| Detection limit (DL) | 0.01    | 0.01                                                                                                                                                                                                                                                                 | 0.01    | 0.01               | 0.1                                                                                                                                                                                                              | 0.1                           | 0.1               | 0.01                | 0.1                | 0.05     | 0.1                | 0.05    | 1                          | 5                                                                                 | 0.05                                                    | 0.004                         | 0.1      |
| Sample size (n)      | 16      | 16                                                                                                                                                                                                                                                                   | 16      | 16                 | 1                                                                                                                                                                                                                | 16                            | 16                | 16                  | 16                 | 16       | 15                 | 15      | 16                         | 16                                                                                | 16                                                      | 16                            | 16       |
| n > DL               | 6       | 0                                                                                                                                                                                                                                                                    | 9       | 9                  | 0                                                                                                                                                                                                                | 1                             | 1                 | 2                   | 16                 | 16       | 15                 | 15      | 4                          | 0                                                                                 | 0                                                       | 0                             | 1        |
| Min                  | 0.01    | <dl< td=""><td>0.01</td><td>0.01</td><td><dl< td=""><td>-</td><td>-</td><td>0.03</td><td>4.6</td><td>2.17</td><td>4.7</td><td>2.20</td><td>1.0</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>         | 0.01    | 0.01               | <dl< td=""><td>-</td><td>-</td><td>0.03</td><td>4.6</td><td>2.17</td><td>4.7</td><td>2.20</td><td>1.0</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>         | -                             | -                 | 0.03                | 4.6                | 2.17     | 4.7                | 2.20    | 1.0                        | <dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>   | <dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<>   | <dl< td=""><td>-</td></dl<>   | -        |
| Median               | 0.01    | <dl< td=""><td>0.02</td><td>0.02</td><td><dl< td=""><td>-</td><td>-</td><td>-</td><td>5.5</td><td>2.57</td><td>5.7</td><td>2.64</td><td>0.5</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>            | 0.02    | 0.02               | <dl< td=""><td>-</td><td>-</td><td>-</td><td>5.5</td><td>2.57</td><td>5.7</td><td>2.64</td><td>0.5</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>            | -                             | -                 | -                   | 5.5                | 2.57     | 5.7                | 2.64    | 0.5                        | <dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>   | <dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<>   | <dl< td=""><td>-</td></dl<>   | -        |
| Mean                 | 0.01    | <dl< td=""><td>0.02</td><td>0.02</td><td><dl< td=""><td>-</td><td>-</td><td>-</td><td>5.7</td><td>2.65</td><td>5.7</td><td>2.63</td><td>0.8</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>            | 0.02    | 0.02               | <dl< td=""><td>-</td><td>-</td><td>-</td><td>5.7</td><td>2.65</td><td>5.7</td><td>2.63</td><td>0.8</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>            | -                             | -                 | -                   | 5.7                | 2.65     | 5.7                | 2.63    | 0.8                        | <dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>   | <dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<>   | <dl< td=""><td>-</td></dl<>   | -        |
| SD                   | 0.01    | <dl< td=""><td>0.01</td><td>0.01</td><td><dl< td=""><td>-</td><td>-</td><td>-</td><td>0.7</td><td>0.30</td><td>0.4</td><td>0.19</td><td>0.6</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>            | 0.01    | 0.01               | <dl< td=""><td>-</td><td>-</td><td>-</td><td>0.7</td><td>0.30</td><td>0.4</td><td>0.19</td><td>0.6</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>            | -                             | -                 | -                   | 0.7                | 0.30     | 0.4                | 0.19    | 0.6                        | <dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>   | <dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<>   | <dl< td=""><td>-</td></dl<>   | -        |
| 80th percentile      | 0.02    | <dl< td=""><td>0.02</td><td>0.02</td><td><dl< td=""><td>-</td><td>-</td><td>-</td><td>6.0</td><td>2.82</td><td>5.9</td><td>2.77</td><td>1.0</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>            | 0.02    | 0.02               | <dl< td=""><td>-</td><td>-</td><td>-</td><td>6.0</td><td>2.82</td><td>5.9</td><td>2.77</td><td>1.0</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>            | -                             | -                 | -                   | 6.0                | 2.82     | 5.9                | 2.77    | 1.0                        | <dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>   | <dl< td=""><td><dl< td=""><td>-</td></dl<></td></dl<>   | <dl< td=""><td>-</td></dl<>   | -        |
| Max                  | 0.05    | <dl< td=""><td>0.03</td><td>0.03</td><td><dl< td=""><td>0.20</td><td>0.20</td><td>0.04</td><td>7.0</td><td>3.25</td><td>6.4</td><td>2.91</td><td>2.0</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.2</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.03    | 0.03               | <dl< td=""><td>0.20</td><td>0.20</td><td>0.04</td><td>7.0</td><td>3.25</td><td>6.4</td><td>2.91</td><td>2.0</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.2</td></dl<></td></dl<></td></dl<></td></dl<> | 0.20                          | 0.20              | 0.04                | 7.0                | 3.25     | 6.4                | 2.91    | 2.0                        | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.2</td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td>0.2</td></dl<></td></dl<> | <dl< td=""><td>0.2</td></dl<> | 0.2      |

| Table 13 DS3 Nutrient and Organic Water Quality Summary Statistics |           |                                                                                                                                                                                                                                                                                                 |         |                    |                                                                                                                                                                                                                                             |                               |                   |                                                                                                                                                                                         |                    |           |                    |         |                            |                                                                                                 |                                                                       |                                             |                   |  |
|--------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------|--------------------|---------|----------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------|-------------------|--|
|                                                                    | Nutrients |                                                                                                                                                                                                                                                                                                 |         |                    |                                                                                                                                                                                                                                             |                               |                   |                                                                                                                                                                                         |                    | Dissolved |                    | Total   |                            |                                                                                                 | Organics                                                              |                                             | Misc              |  |
|                                                                    | Ammonia   | Nitrite                                                                                                                                                                                                                                                                                         | Nitrate | Nitrogen<br>Oxides | Organic<br>Nitrogen                                                                                                                                                                                                                         | Total<br>Kjeldahl<br>Nitrogen | Total<br>Nitrogen | Total<br>Phosphorus                                                                                                                                                                     | Silicon as<br>SiO2 | Silicon   | Silicon as<br>SiO2 | Silicon | Total<br>Organic<br>Carbon | Oil &<br>Grease                                                                                 | Phenols                                                               | Total<br>Cyanide                            | Fluoride          |  |
|                                                                    | mg/L      | mg/L                                                                                                                                                                                                                                                                                            | mg/L    | mg/L               | mg/L                                                                                                                                                                                                                                        | mg/L                          | mg/L              | mg/L                                                                                                                                                                                    | mg/L               | mg/L      | mg/L               | mg/L    | mg/L                       | mg/L                                                                                            | mg/L                                                                  | mg/L                                        | mg/L              |  |
| Detection limit (DL)                                               | 0.01      | 0.01                                                                                                                                                                                                                                                                                            | 0.01    | 0.01               | 0.1                                                                                                                                                                                                                                         | 0.1                           | 0.1               | 0.01                                                                                                                                                                                    | 0.1                | 0.05      | 0.1                | 0.05    | 1                          | 5                                                                                               | 0.05                                                                  | 0.004                                       | 0.1               |  |
| Sample size (n)                                                    | 14        | 14                                                                                                                                                                                                                                                                                              | 14      | 14                 | 1                                                                                                                                                                                                                                           | 14                            | 14                | 14                                                                                                                                                                                      | 14                 | 14        | 13                 | 13      | 14                         | 14                                                                                              | 14                                                                    | 14                                          | 14                |  |
| n > DL                                                             | 5         | 0                                                                                                                                                                                                                                                                                               | 8       | 8                  | 0                                                                                                                                                                                                                                           | 1                             | 1                 | 0                                                                                                                                                                                       | 14                 | 14        | 13                 | 13      | 3                          | 0                                                                                               | 0                                                                     | 0                                           | 0                 |  |
| Min                                                                | 0.01      | <dl< td=""><td>0.01</td><td>0.01</td><td><dl< td=""><td>-</td><td>-</td><td><dl< td=""><td>4.6</td><td>2.17</td><td>4.7</td><td>2.20</td><td>1.0</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>       | 0.01    | 0.01               | <dl< td=""><td>-</td><td>-</td><td><dl< td=""><td>4.6</td><td>2.17</td><td>4.7</td><td>2.20</td><td>1.0</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>       | -                             | -                 | <dl< td=""><td>4.6</td><td>2.17</td><td>4.7</td><td>2.20</td><td>1.0</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 4.6                | 2.17      | 4.7                | 2.20    | 1.0                        | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |  |
| Median                                                             | 0.01      | <dl< td=""><td>0.02</td><td>0.02</td><td><dl< td=""><td>-</td><td>-</td><td><dl< td=""><td>5.3</td><td>2.49</td><td>5.6</td><td>2.57</td><td>0.5</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>       | 0.02    | 0.02               | <dl< td=""><td>-</td><td>-</td><td><dl< td=""><td>5.3</td><td>2.49</td><td>5.6</td><td>2.57</td><td>0.5</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>       | -                             | -                 | <dl< td=""><td>5.3</td><td>2.49</td><td>5.6</td><td>2.57</td><td>0.5</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 5.3                | 2.49      | 5.6                | 2.57    | 0.5                        | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |  |
| Mean                                                               | 0.01      | <dl< td=""><td>0.02</td><td>0.02</td><td><dl< td=""><td>-</td><td>-</td><td><dl< td=""><td>5.4</td><td>2.53</td><td>5.7</td><td>2.66</td><td>0.9</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>       | 0.02    | 0.02               | <dl< td=""><td>-</td><td>-</td><td><dl< td=""><td>5.4</td><td>2.53</td><td>5.7</td><td>2.66</td><td>0.9</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>       | -                             | -                 | <dl< td=""><td>5.4</td><td>2.53</td><td>5.7</td><td>2.66</td><td>0.9</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 5.4                | 2.53      | 5.7                | 2.66    | 0.9                        | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |  |
| SD                                                                 | 0.01      | <dl< td=""><td>0.01</td><td>0.01</td><td><dl< td=""><td>-</td><td>-</td><td><dl< td=""><td>0.6</td><td>0.26</td><td>1.0</td><td>0.48</td><td>0.8</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>       | 0.01    | 0.01               | <dl< td=""><td>-</td><td>-</td><td><dl< td=""><td>0.6</td><td>0.26</td><td>1.0</td><td>0.48</td><td>0.8</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>       | -                             | -                 | <dl< td=""><td>0.6</td><td>0.26</td><td>1.0</td><td>0.48</td><td>0.8</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.6                | 0.26      | 1.0                | 0.48    | 0.8                        | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |  |
| 80th percentile                                                    | 0.02      | <dl< td=""><td>0.02</td><td>0.02</td><td><dl< td=""><td>-</td><td>-</td><td><dl< td=""><td>5.6</td><td>2.60</td><td>5.9</td><td>2.75</td><td>1.1</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>       | 0.02    | 0.02               | <dl< td=""><td>-</td><td>-</td><td><dl< td=""><td>5.6</td><td>2.60</td><td>5.9</td><td>2.75</td><td>1.1</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>       | -                             | -                 | <dl< td=""><td>5.6</td><td>2.60</td><td>5.9</td><td>2.75</td><td>1.1</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 5.6                | 2.60      | 5.9                | 2.75    | 1.1                        | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |  |
| Max                                                                | 0.04      | <dl< td=""><td>0.04</td><td>0.04</td><td><dl< td=""><td>0.10</td><td>0.10</td><td><dl< td=""><td>6.8</td><td>3.20</td><td>8.8</td><td>4.12</td><td>3.0</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.04    | 0.04               | <dl< td=""><td>0.10</td><td>0.10</td><td><dl< td=""><td>6.8</td><td>3.20</td><td>8.8</td><td>4.12</td><td>3.0</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.10                          | 0.10              | <dl< td=""><td>6.8</td><td>3.20</td><td>8.8</td><td>4.12</td><td>3.0</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 6.8                | 3.20      | 8.8                | 4.12    | 3.0                        | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |  |

| Table 14 DS4 Nutrient and Organic Water Quality Summary Statistics |           |                                                                                                                                                                                                                                                                                                              |         |                    |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                |                                                                                                                                                                                                      |                     |                    |           |                    |         |                            |                                                                                                 |                                                                       |                                             |                   |  |
|--------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------|-----------|--------------------|---------|----------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------|-------------------|--|
|                                                                    | Nutrients |                                                                                                                                                                                                                                                                                                              |         |                    |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                |                                                                                                                                                                                                      |                     |                    | Dissolved |                    | Total   |                            |                                                                                                 | Organics                                                              |                                             | Misc              |  |
|                                                                    | Ammonia   | Nitrite                                                                                                                                                                                                                                                                                                      | Nitrate | Nitrogen<br>Oxides | Organic<br>Nitrogen                                                                                                                                                                                                                                      | Total<br>Kjeldahl<br>Nitrogen                                                                                                                                                                                                  | Total<br>Nitrogen                                                                                                                                                                                    | Total<br>Phosphorus | Silicon as<br>SiO2 | Silicon   | Silicon as<br>SiO2 | Silicon | Total<br>Organic<br>Carbon | Oil &<br>Grease                                                                                 | Phenols                                                               | Total<br>Cyanide                            | Fluoride          |  |
|                                                                    | mg/L      | mg/L                                                                                                                                                                                                                                                                                                         | mg/L    | mg/L               | mg/L                                                                                                                                                                                                                                                     | mg/L                                                                                                                                                                                                                           | mg/L                                                                                                                                                                                                 | mg/L                | mg/L               | mg/L      | mg/L               | mg/L    | mg/L                       | mg/L                                                                                            | mg/L                                                                  | mg/L                                        | mg/L              |  |
| Detection limit (DL)                                               | 0.01      | 0.01                                                                                                                                                                                                                                                                                                         | 0.01    | 0.01               | 0.1                                                                                                                                                                                                                                                      | 0.1                                                                                                                                                                                                                            | 0.1                                                                                                                                                                                                  | 0.01                | 0.1                | 0.05      | 0.1                | 0.05    | 1                          | 5                                                                                               | 0.05                                                                  | 0.004                                       | 0.1               |  |
| Sample size (n)                                                    | 9         | 9                                                                                                                                                                                                                                                                                                            | 9       | 9                  | 0                                                                                                                                                                                                                                                        | 9                                                                                                                                                                                                                              | 9                                                                                                                                                                                                    | 9                   | 9                  | 9         | 9                  | 9       | 9                          | 9                                                                                               | 9                                                                     | 9                                           | 9                 |  |
| n > DL                                                             | 2         | 0                                                                                                                                                                                                                                                                                                            | 5       | 5                  | 0                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                              | 0                                                                                                                                                                                                    | 2                   | 9                  | 9         | 9                  | 9       | 2                          | 0                                                                                               | 0                                                                     | 0                                           | 0                 |  |
| Min                                                                | 0.01      | <dl< td=""><td>0.01</td><td>0.01</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.02</td><td>4.8</td><td>2.22</td><td>4.6</td><td>2.16</td><td>2.0</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.01    | 0.01               | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.02</td><td>4.8</td><td>2.22</td><td>4.6</td><td>2.16</td><td>2.0</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td>0.02</td><td>4.8</td><td>2.22</td><td>4.6</td><td>2.16</td><td>2.0</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.02</td><td>4.8</td><td>2.22</td><td>4.6</td><td>2.16</td><td>2.0</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.02                | 4.8                | 2.22      | 4.6                | 2.16    | 2.0                        | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |  |
| Median                                                             | -         | <dl< td=""><td>0.01</td><td>0.01</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>5.4</td><td>2.52</td><td>5.5</td><td>2.55</td><td>-</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>      | 0.01    | 0.01               | <dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>5.4</td><td>2.52</td><td>5.5</td><td>2.55</td><td>-</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>      | <dl< td=""><td><dl< td=""><td>-</td><td>5.4</td><td>2.52</td><td>5.5</td><td>2.55</td><td>-</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>      | <dl< td=""><td>-</td><td>5.4</td><td>2.52</td><td>5.5</td><td>2.55</td><td>-</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<>      | -                   | 5.4                | 2.52      | 5.5                | 2.55    | -                          | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |  |
| Mean                                                               | -         | <dl< td=""><td>0.02</td><td>0.02</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>5.5</td><td>2.55</td><td>5.5</td><td>2.55</td><td>-</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>      | 0.02    | 0.02               | <dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>5.5</td><td>2.55</td><td>5.5</td><td>2.55</td><td>-</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>      | <dl< td=""><td><dl< td=""><td>-</td><td>5.5</td><td>2.55</td><td>5.5</td><td>2.55</td><td>-</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>      | <dl< td=""><td>-</td><td>5.5</td><td>2.55</td><td>5.5</td><td>2.55</td><td>-</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<>      | -                   | 5.5                | 2.55      | 5.5                | 2.55    | -                          | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |  |
| SD                                                                 | -         | <dl< td=""><td>0.02</td><td>0.02</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>0.6</td><td>0.27</td><td>0.6</td><td>0.26</td><td>-</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>      | 0.02    | 0.02               | <dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>0.6</td><td>0.27</td><td>0.6</td><td>0.26</td><td>-</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>      | <dl< td=""><td><dl< td=""><td>-</td><td>0.6</td><td>0.27</td><td>0.6</td><td>0.26</td><td>-</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>      | <dl< td=""><td>-</td><td>0.6</td><td>0.27</td><td>0.6</td><td>0.26</td><td>-</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<>      | -                   | 0.6                | 0.27      | 0.6                | 0.26    | -                          | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |  |
| 80th percentile                                                    | -         | <dl< td=""><td>0.03</td><td>0.03</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>5.8</td><td>2.71</td><td>5.8</td><td>2.66</td><td>-</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>      | 0.03    | 0.03               | <dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>5.8</td><td>2.71</td><td>5.8</td><td>2.66</td><td>-</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>      | <dl< td=""><td><dl< td=""><td>-</td><td>5.8</td><td>2.71</td><td>5.8</td><td>2.66</td><td>-</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>      | <dl< td=""><td>-</td><td>5.8</td><td>2.71</td><td>5.8</td><td>2.66</td><td>-</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<>      | -                   | 5.8                | 2.71      | 5.8                | 2.66    | -                          | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |  |
| Max                                                                | 0.02      | <dl< td=""><td>0.05</td><td>0.05</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.3</td><td>6.7</td><td>3.13</td><td>6.6</td><td>3.09</td><td>3.0</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>  | 0.05    | 0.05               | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.3</td><td>6.7</td><td>3.13</td><td>6.6</td><td>3.09</td><td>3.0</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>  | <dl< td=""><td><dl< td=""><td>0.3</td><td>6.7</td><td>3.13</td><td>6.6</td><td>3.09</td><td>3.0</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>  | <dl< td=""><td>0.3</td><td>6.7</td><td>3.13</td><td>6.6</td><td>3.09</td><td>3.0</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<>  | 0.3                 | 6.7                | 3.13      | 6.6                | 3.09    | 3.0                        | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |  |









Dissolved Silicon as SiO<sub>2</sub>




Total Silicon as SiO<sub>2</sub>







Total Silicon











# 3.4 Metals and Metalloids Water Quality Monitoring Data

The metal and metalloid water quality results for each sampling location and event are provided below in Site Summary **Tables 15 to 20** and associated Control Charts and Box Plots:

- Of the 21 analytes only Aluminium, Barium, Cobalt, Iron, Lithium, Manganese, Nickel, Rubidium, Strontium and Zinc had total and/or dissolved concentrations above detection limits for a meaningful number of samples and sites, and Molybdenum concentrations were above detection at a few replicate samples for sites US2, DS1 and DS2. The results for these sites are graphed in the Control Graphs and Box Plots below.
- Of the remaining analytes, Selenium concentrations were all below the detection limit of 0.01mg/L for all samples. Whilst the ANZECC (2000) Total Selenium Default Trigger Level for 95% protection of biota (DTV95) is 0.011mg/L, Table 3.4.1 recommended that the 99% protection DTV (0.005mg/L) be applied for typical slightly to moderately disturbed systems.
- The remaining analytes (Antimony, Arsenic, Beryllium, Boron, Cadmium, Chromium, Copper, Lead and Uranium) had no or a very few samples above Detection.

|                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                           |        |                                                                                                                                                                                                                                                                                                                                   | Table 15                                                                                                                                                                                                                                                                                                | 5 US1 Met                                                                                                                                                                                                                                                                     | al and Me                                                                                                                                                                                                                                           | talloid V                                                                                                                                                                                                                 | Vater Qua   | ality Summar | y Statistics                                                                                                                                                                    |        |                                                                                                                                           |                                                                                                                 |           |                                                                         |                                               |       |           |
|----------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------|-----------------------------------------------|-------|-----------|
|                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                           |        |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                           | Total Me    | tals         |                                                                                                                                                                                 |        |                                                                                                                                           |                                                                                                                 |           |                                                                         |                                               |       |           |
|                      | Aluminium   | Antimony                                                                                                                                                                                                                                                                                                                                                                                                                      | Arsenic                                                                                                                                                                                                                                                                                                                                                                                             | Beryllium                                                                                                                                                                                                                                                                                                                                                                 | Barium | Cadmium                                                                                                                                                                                                                                                                                                                           | Chromiu<br>m                                                                                                                                                                                                                                                                                            | Cobalt                                                                                                                                                                                                                                                                        | Copper                                                                                                                                                                                                                                              | Lead                                                                                                                                                                                                                      | Lithium     | Manganese    | Molybdenum                                                                                                                                                                      | Nickel | Rubidium                                                                                                                                  | Selenium                                                                                                        | Strontium | Uranium                                                                 | Zinc                                          | Boron | Iron      |
|                      | mg/L        | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/L                                                                                                                                                                                                                                                                                                                                                                                                | mg/L                                                                                                                                                                                                                                                                                                                                                                      | mg/L   | mg/L                                                                                                                                                                                                                                                                                                                              | mg/L                                                                                                                                                                                                                                                                                                    | mg/L                                                                                                                                                                                                                                                                          | mg/L                                                                                                                                                                                                                                                | mg/L                                                                                                                                                                                                                      | mg/L        | mg/L         | mg/L                                                                                                                                                                            | mg/L   | mg/L                                                                                                                                      | mg/L                                                                                                            | mg/L      | mg/L                                                                    | mg/L                                          | mg/L  | mg/L      |
| Detection limit (DL) | 0.01        | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.001                                                                                                                                                                                                                                                                                                                                                                                               | 0.001                                                                                                                                                                                                                                                                                                                                                                     | 0.001  | 0.0001                                                                                                                                                                                                                                                                                                                            | 0.001                                                                                                                                                                                                                                                                                                   | 0.001                                                                                                                                                                                                                                                                         | 0.001                                                                                                                                                                                                                                               | 0.001                                                                                                                                                                                                                     | 0.001       | 0.001        | 0.001                                                                                                                                                                           | 0.001  | 0.001                                                                                                                                     | 0.01                                                                                                            | 0.001     | 0.001                                                                   | 0.005                                         | 0.05  | 0.05      |
| Sample size (n)      | 9           | 9                                                                                                                                                                                                                                                                                                                                                                                                                             | 9                                                                                                                                                                                                                                                                                                                                                                                                   | 9                                                                                                                                                                                                                                                                                                                                                                         | 9      | 9                                                                                                                                                                                                                                                                                                                                 | 9                                                                                                                                                                                                                                                                                                       | 9                                                                                                                                                                                                                                                                             | 9                                                                                                                                                                                                                                                   | 9                                                                                                                                                                                                                         | 9           | 9            | 9                                                                                                                                                                               | 9      | 9                                                                                                                                         | 9                                                                                                               | 9         | 9                                                                       | 9                                             | 9     | 9         |
| n > DL               | 9           | 0                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                         | 9      | 0                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                         | 1           | 9            | 0                                                                                                                                                                               | 1      | 0                                                                                                                                         | 0                                                                                                               | 8         | 0                                                                       | 1                                             | 1     | 9         |
| Min                  | 0.02        | <dl< td=""><td><dl< td=""><td>•</td><td>0.004</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>•</td><td>0.012</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td>-</td><td>-</td><td>0.14</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                | <dl< td=""><td>•</td><td>0.004</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>•</td><td>0.012</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td>-</td><td>-</td><td>0.14</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                | •                                                                                                                                                                                                                                                                                                                                                                         | 0.004  | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>•</td><td>0.012</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td>-</td><td>-</td><td>0.14</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>•</td><td>0.012</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td>-</td><td>-</td><td>0.14</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                | <dl< td=""><td><dl< td=""><td><dl< td=""><td>•</td><td>0.012</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td>-</td><td>-</td><td>0.14</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                | <dl< td=""><td><dl< td=""><td>•</td><td>0.012</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td>-</td><td>-</td><td>0.14</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                | <dl< td=""><td>•</td><td>0.012</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td>-</td><td>-</td><td>0.14</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                | •           | 0.012        | <dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td>-</td><td>-</td><td>0.14</td></dl<></td></dl<></td></dl<></td></dl<>                        | -      | <dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td>-</td><td>-</td><td>0.14</td></dl<></td></dl<></td></dl<>                      | <dl< td=""><td>0.001</td><td><dl< td=""><td>-</td><td>-</td><td>0.14</td></dl<></td></dl<>                      | 0.001     | <dl< td=""><td>-</td><td>-</td><td>0.14</td></dl<>                      | -                                             | -     | 0.14      |
| Median               | 0.07        | <dl< td=""><td><dl< td=""><td>•</td><td>0.008</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>•</td><td>0.046</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td>-</td><td>-</td><td>0.42</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                | <dl< td=""><td>•</td><td>0.008</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>•</td><td>0.046</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td>-</td><td>-</td><td>0.42</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                | •                                                                                                                                                                                                                                                                                                                                                                         | 0.008  | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>•</td><td>0.046</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td>-</td><td>-</td><td>0.42</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>•</td><td>0.046</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td>-</td><td>-</td><td>0.42</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                | <dl< td=""><td><dl< td=""><td><dl< td=""><td>•</td><td>0.046</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td>-</td><td>-</td><td>0.42</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                | <dl< td=""><td><dl< td=""><td>•</td><td>0.046</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td>-</td><td>-</td><td>0.42</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                | <dl< td=""><td>•</td><td>0.046</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td>-</td><td>-</td><td>0.42</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                | •           | 0.046        | <dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td>-</td><td>-</td><td>0.42</td></dl<></td></dl<></td></dl<></td></dl<>                        | -      | <dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td>-</td><td>-</td><td>0.42</td></dl<></td></dl<></td></dl<>                      | <dl< td=""><td>0.003</td><td><dl< td=""><td>-</td><td>-</td><td>0.42</td></dl<></td></dl<>                      | 0.003     | <dl< td=""><td>-</td><td>-</td><td>0.42</td></dl<>                      | -                                             | -     | 0.42      |
| Mean                 | 0.07        | <dl< td=""><td><dl< td=""><td>•</td><td>0.008</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>•</td><td>0.043</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td>-</td><td>-</td><td>0.53</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                | <dl< td=""><td>•</td><td>0.008</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>•</td><td>0.043</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td>-</td><td>-</td><td>0.53</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                | •                                                                                                                                                                                                                                                                                                                                                                         | 0.008  | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>•</td><td>0.043</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td>-</td><td>-</td><td>0.53</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>•</td><td>0.043</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td>-</td><td>-</td><td>0.53</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                | <dl< td=""><td><dl< td=""><td><dl< td=""><td>•</td><td>0.043</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td>-</td><td>-</td><td>0.53</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                | <dl< td=""><td><dl< td=""><td>•</td><td>0.043</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td>-</td><td>-</td><td>0.53</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                | <dl< td=""><td>•</td><td>0.043</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td>-</td><td>-</td><td>0.53</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                | •           | 0.043        | <dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td>-</td><td>-</td><td>0.53</td></dl<></td></dl<></td></dl<></td></dl<>                        | -      | <dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td>-</td><td>-</td><td>0.53</td></dl<></td></dl<></td></dl<>                      | <dl< td=""><td>0.003</td><td><dl< td=""><td>-</td><td>-</td><td>0.53</td></dl<></td></dl<>                      | 0.003     | <dl< td=""><td>-</td><td>-</td><td>0.53</td></dl<>                      | -                                             | -     | 0.53      |
| SD                   | 0.04        | <dl< td=""><td><dl< td=""><td>•</td><td>0.003</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>•</td><td>0.025</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td>-</td><td>-</td><td>0.27</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                | <dl< td=""><td>•</td><td>0.003</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>•</td><td>0.025</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td>-</td><td>-</td><td>0.27</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                | •                                                                                                                                                                                                                                                                                                                                                                         | 0.003  | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>•</td><td>0.025</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td>-</td><td>-</td><td>0.27</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>•</td><td>0.025</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td>-</td><td>-</td><td>0.27</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                | <dl< td=""><td><dl< td=""><td><dl< td=""><td>•</td><td>0.025</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td>-</td><td>-</td><td>0.27</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                | <dl< td=""><td><dl< td=""><td>•</td><td>0.025</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td>-</td><td>-</td><td>0.27</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                | <dl< td=""><td>•</td><td>0.025</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td>-</td><td>-</td><td>0.27</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                | •           | 0.025        | <dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td>-</td><td>-</td><td>0.27</td></dl<></td></dl<></td></dl<></td></dl<>                        | -      | <dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td>-</td><td>-</td><td>0.27</td></dl<></td></dl<></td></dl<>                      | <dl< td=""><td>0.002</td><td><dl< td=""><td>-</td><td>-</td><td>0.27</td></dl<></td></dl<>                      | 0.002     | <dl< td=""><td>-</td><td>-</td><td>0.27</td></dl<>                      | -                                             | -     | 0.27      |
| 80th percentile      | 0.09        | <dl< td=""><td><dl< td=""><td>-</td><td>0.009</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td><td>0.064</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.004</td><td><dl< td=""><td>-</td><td>-</td><td>0.83</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                 | <dl< td=""><td>-</td><td>0.009</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td><td>0.064</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.004</td><td><dl< td=""><td>-</td><td>-</td><td>0.83</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                 | -                                                                                                                                                                                                                                                                                                                                                                         | 0.009  | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td><td>0.064</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.004</td><td><dl< td=""><td>-</td><td>-</td><td>0.83</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                 | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td><td>0.064</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.004</td><td><dl< td=""><td>-</td><td>-</td><td>0.83</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                 | <dl< td=""><td><dl< td=""><td><dl< td=""><td></td><td>0.064</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.004</td><td><dl< td=""><td>-</td><td>-</td><td>0.83</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                 | <dl< td=""><td><dl< td=""><td></td><td>0.064</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.004</td><td><dl< td=""><td>-</td><td>-</td><td>0.83</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                 | <dl< td=""><td></td><td>0.064</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.004</td><td><dl< td=""><td>-</td><td>-</td><td>0.83</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                 |             | 0.064        | <dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.004</td><td><dl< td=""><td>-</td><td>-</td><td>0.83</td></dl<></td></dl<></td></dl<></td></dl<>                        | -      | <dl< td=""><td><dl< td=""><td>0.004</td><td><dl< td=""><td>-</td><td>-</td><td>0.83</td></dl<></td></dl<></td></dl<>                      | <dl< td=""><td>0.004</td><td><dl< td=""><td>-</td><td>-</td><td>0.83</td></dl<></td></dl<>                      | 0.004     | <dl< td=""><td>-</td><td>-</td><td>0.83</td></dl<>                      | -                                             | -     | 0.83      |
| Max                  | 0.16        | <dl< td=""><td><dl< td=""><td>0.001</td><td>0.013</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.004</td><td>0.082</td><td><dl< td=""><td>0.048</td><td><dl< td=""><td><dl< td=""><td>0.005</td><td><dl< td=""><td>0.009</td><td>0.06</td><td>0.86</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>             | <dl< td=""><td>0.001</td><td>0.013</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.004</td><td>0.082</td><td><dl< td=""><td>0.048</td><td><dl< td=""><td><dl< td=""><td>0.005</td><td><dl< td=""><td>0.009</td><td>0.06</td><td>0.86</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>             | 0.001                                                                                                                                                                                                                                                                                                                                                                     | 0.013  | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.004</td><td>0.082</td><td><dl< td=""><td>0.048</td><td><dl< td=""><td><dl< td=""><td>0.005</td><td><dl< td=""><td>0.009</td><td>0.06</td><td>0.86</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.004</td><td>0.082</td><td><dl< td=""><td>0.048</td><td><dl< td=""><td><dl< td=""><td>0.005</td><td><dl< td=""><td>0.009</td><td>0.06</td><td>0.86</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.004</td><td>0.082</td><td><dl< td=""><td>0.048</td><td><dl< td=""><td><dl< td=""><td>0.005</td><td><dl< td=""><td>0.009</td><td>0.06</td><td>0.86</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td>0.004</td><td>0.082</td><td><dl< td=""><td>0.048</td><td><dl< td=""><td><dl< td=""><td>0.005</td><td><dl< td=""><td>0.009</td><td>0.06</td><td>0.86</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.004</td><td>0.082</td><td><dl< td=""><td>0.048</td><td><dl< td=""><td><dl< td=""><td>0.005</td><td><dl< td=""><td>0.009</td><td>0.06</td><td>0.86</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.004       | 0.082        | <dl< td=""><td>0.048</td><td><dl< td=""><td><dl< td=""><td>0.005</td><td><dl< td=""><td>0.009</td><td>0.06</td><td>0.86</td></dl<></td></dl<></td></dl<></td></dl<>             | 0.048  | <dl< td=""><td><dl< td=""><td>0.005</td><td><dl< td=""><td>0.009</td><td>0.06</td><td>0.86</td></dl<></td></dl<></td></dl<>               | <dl< td=""><td>0.005</td><td><dl< td=""><td>0.009</td><td>0.06</td><td>0.86</td></dl<></td></dl<>               | 0.005     | <dl< td=""><td>0.009</td><td>0.06</td><td>0.86</td></dl<>               | 0.009                                         | 0.06  | 0.86      |
|                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                           |        |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                         | Dissolved N | letals       |                                                                                                                                                                                 |        |                                                                                                                                           |                                                                                                                 |           |                                                                         |                                               |       |           |
|                      | Aluminium   | Antimony                                                                                                                                                                                                                                                                                                                                                                                                                      | Arsenic                                                                                                                                                                                                                                                                                                                                                                                             | Beryllium                                                                                                                                                                                                                                                                                                                                                                 | Barium | Cadmium                                                                                                                                                                                                                                                                                                                           | Chromiu<br>m                                                                                                                                                                                                                                                                                            | Cobalt                                                                                                                                                                                                                                                                        | Copper                                                                                                                                                                                                                                              | Lead                                                                                                                                                                                                                      | Lithium     | Manganese    | Molybdenum                                                                                                                                                                      | Nickel | Rubidium                                                                                                                                  | Selenium                                                                                                        | Strontium | Uranium                                                                 | Zinc                                          | Boron | Iron      |
|                      | mg/L        | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/L                                                                                                                                                                                                                                                                                                                                                                                                | mg/L                                                                                                                                                                                                                                                                                                                                                                      | mg/L   | mg/L                                                                                                                                                                                                                                                                                                                              | mg/L                                                                                                                                                                                                                                                                                                    | mg/L                                                                                                                                                                                                                                                                          | mg/L                                                                                                                                                                                                                                                | mg/L                                                                                                                                                                                                                      | mg/L        | mg/L         | mg/L                                                                                                                                                                            | mg/L   | mg/L                                                                                                                                      | mg/L                                                                                                            | mg/L      | mg/L                                                                    | mg/L                                          | mg/L  | mg/L      |
| Detection limit (DL) | 0.01        | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.001                                                                                                                                                                                                                                                                                                                                                                                               | 0.001                                                                                                                                                                                                                                                                                                                                                                     | 0.001  | 0.0001                                                                                                                                                                                                                                                                                                                            | 0.001                                                                                                                                                                                                                                                                                                   | 0.001                                                                                                                                                                                                                                                                         | 0.001                                                                                                                                                                                                                                               | 0.001                                                                                                                                                                                                                     | 0.001       | 0.001        | 0.001                                                                                                                                                                           | 0.001  | 0.001                                                                                                                                     | 0.01                                                                                                            | 0.001     | 0.001                                                                   | 0.005                                         | 0.05  | 0.05      |
| Sample size (n)      | 9           | 9                                                                                                                                                                                                                                                                                                                                                                                                                             | 9                                                                                                                                                                                                                                                                                                                                                                                                   | 9                                                                                                                                                                                                                                                                                                                                                                         | 9      | 9                                                                                                                                                                                                                                                                                                                                 | 9                                                                                                                                                                                                                                                                                                       | 9                                                                                                                                                                                                                                                                             | 9                                                                                                                                                                                                                                                   | 9                                                                                                                                                                                                                         | 9           | 9            | 9                                                                                                                                                                               | 9      | 9                                                                                                                                         | 9                                                                                                               | 9         | 9                                                                       | 9                                             | 9     | 9         |
| n > DL               | 9           | 0                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                         | 9      | 0                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                         | 2           | 9            | 0                                                                                                                                                                               | 1      | 0                                                                                                                                         | 0                                                                                                               | 9         | 0                                                                       | 0                                             | 1     | 9         |
| Min                  | 0.02        | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.004</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>0.001</td><td>0.010</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.1</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>             | <dl< td=""><td><dl< td=""><td>0.004</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>0.001</td><td>0.010</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.1</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>             | <dl< td=""><td>0.004</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>0.001</td><td>0.010</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.1</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>             | 0.004  | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>0.001</td><td>0.010</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.1</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>             | <dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>0.001</td><td>0.010</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.1</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>             | <dl< td=""><td><dl< td=""><td>-</td><td>0.001</td><td>0.010</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.1</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>             | <dl< td=""><td>-</td><td>0.001</td><td>0.010</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.1</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>             | -                                                                                                                                                                                                                         | 0.001       | 0.010        | <dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.1</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>         | -      | <dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.1</td></dl<></td></dl<></td></dl<></td></dl<>       | <dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.1</td></dl<></td></dl<></td></dl<>       | 0.001     | <dl< td=""><td><dl< td=""><td>-</td><td>0.1</td></dl<></td></dl<>       | <dl< td=""><td>-</td><td>0.1</td></dl<>       | -     | 0.1       |
| Median               | 0.03        | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.006</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td><td>0.033</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.004</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.26</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                | <dl< td=""><td><dl< td=""><td>0.006</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td><td>0.033</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.004</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.26</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                | <dl< td=""><td>0.006</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td><td>0.033</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.004</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.26</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                | 0.006  | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td><td>0.033</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.004</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.26</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                | <dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td><td>0.033</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.004</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.26</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                | <dl< td=""><td><dl< td=""><td>-</td><td>-</td><td>0.033</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.004</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.26</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                | <dl< td=""><td>-</td><td>-</td><td>0.033</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.004</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.26</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                | -                                                                                                                                                                                                                         | -           | 0.033        | <dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.004</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.26</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>        | -      | <dl< td=""><td><dl< td=""><td>0.004</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.26</td></dl<></td></dl<></td></dl<></td></dl<>      | <dl< td=""><td>0.004</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.26</td></dl<></td></dl<></td></dl<>      | 0.004     | <dl< td=""><td><dl< td=""><td>-</td><td>0.26</td></dl<></td></dl<>      | <dl< td=""><td>-</td><td>0.26</td></dl<>      | -     | 0.26      |
| Mean                 | 0.038888889 | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.006</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td><td>0.036</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.3088889</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>           | <dl< td=""><td><dl< td=""><td>0.006</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td><td>0.036</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.3088889</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>           | <dl< td=""><td>0.006</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td><td>0.036</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.3088889</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>           | 0.006  | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td><td>0.036</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.3088889</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>           | <dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td><td>0.036</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.3088889</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>           | <dl< td=""><td><dl< td=""><td>-</td><td>-</td><td>0.036</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.3088889</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>           | <dl< td=""><td>-</td><td>-</td><td>0.036</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.3088889</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>           | -                                                                                                                                                                                                                         | -           | 0.036        | <dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.3088889</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>   | -      | <dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.3088889</td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.003</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.3088889</td></dl<></td></dl<></td></dl<> | 0.003     | <dl< td=""><td><dl< td=""><td>-</td><td>0.3088889</td></dl<></td></dl<> | <dl< td=""><td>-</td><td>0.3088889</td></dl<> | -     | 0.3088889 |
| SD                   | 0.01964971  | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td><td>0.023</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.1958599</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>           | <dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td><td>0.023</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.1958599</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>           | <dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td><td>0.023</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.1958599</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>           | 0.002  | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td><td>0.023</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.1958599</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>           | <dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td><td>0.023</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.1958599</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>           | <dl< td=""><td><dl< td=""><td>-</td><td>-</td><td>0.023</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.1958599</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>           | <dl< td=""><td>-</td><td>-</td><td>0.023</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.1958599</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>           | -                                                                                                                                                                                                                         | -           | 0.023        | <dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.1958599</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>   | -      | <dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.1958599</td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.1958599</td></dl<></td></dl<></td></dl<> | 0.001     | <dl< td=""><td><dl< td=""><td>-</td><td>0.1958599</td></dl<></td></dl<> | <dl< td=""><td>-</td><td>0.1958599</td></dl<> | -     | 0.1958599 |
| 80th percentile      | 0.06        | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.008</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td><td>0.056</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.004</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.464</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>               | <dl< td=""><td><dl< td=""><td>0.008</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td><td>0.056</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.004</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.464</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>               | <dl< td=""><td>0.008</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td><td>0.056</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.004</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.464</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>               | 0.008  | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td><td>0.056</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.004</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.464</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>               | <dl< td=""><td><dl< td=""><td><dl< td=""><td>-</td><td>-</td><td>0.056</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.004</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.464</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>               | <dl< td=""><td><dl< td=""><td>-</td><td>-</td><td>0.056</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.004</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.464</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>               | <dl< td=""><td>-</td><td>-</td><td>0.056</td><td><dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.004</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.464</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>               | -                                                                                                                                                                                                                         | -           | 0.056        | <dl< td=""><td>-</td><td><dl< td=""><td><dl< td=""><td>0.004</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.464</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>       | -      | <dl< td=""><td><dl< td=""><td>0.004</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.464</td></dl<></td></dl<></td></dl<></td></dl<>     | <dl< td=""><td>0.004</td><td><dl< td=""><td><dl< td=""><td>-</td><td>0.464</td></dl<></td></dl<></td></dl<>     | 0.004     | <dl< td=""><td><dl< td=""><td>-</td><td>0.464</td></dl<></td></dl<>     | <dl< td=""><td>-</td><td>0.464</td></dl<>     | -     | 0.464     |
| Max                  | 0.07        | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.009</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.010</td><td>0.010</td><td>0.076</td><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.005</td><td><dl< td=""><td><dl< td=""><td>0.06</td><td>0.68</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td>0.009</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.010</td><td>0.010</td><td>0.076</td><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.005</td><td><dl< td=""><td><dl< td=""><td>0.06</td><td>0.68</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.009</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.010</td><td>0.010</td><td>0.076</td><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.005</td><td><dl< td=""><td><dl< td=""><td>0.06</td><td>0.68</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.009  | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.010</td><td>0.010</td><td>0.076</td><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.005</td><td><dl< td=""><td><dl< td=""><td>0.06</td><td>0.68</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.010</td><td>0.010</td><td>0.076</td><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.005</td><td><dl< td=""><td><dl< td=""><td>0.06</td><td>0.68</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td>0.010</td><td>0.010</td><td>0.076</td><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.005</td><td><dl< td=""><td><dl< td=""><td>0.06</td><td>0.68</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.010</td><td>0.010</td><td>0.076</td><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.005</td><td><dl< td=""><td><dl< td=""><td>0.06</td><td>0.68</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.010                                                                                                                                                                                                                     | 0.010       | 0.076        | <dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.005</td><td><dl< td=""><td><dl< td=""><td>0.06</td><td>0.68</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.002  | <dl< td=""><td><dl< td=""><td>0.005</td><td><dl< td=""><td><dl< td=""><td>0.06</td><td>0.68</td></dl<></td></dl<></td></dl<></td></dl<>   | <dl< td=""><td>0.005</td><td><dl< td=""><td><dl< td=""><td>0.06</td><td>0.68</td></dl<></td></dl<></td></dl<>   | 0.005     | <dl< td=""><td><dl< td=""><td>0.06</td><td>0.68</td></dl<></td></dl<>   | <dl< td=""><td>0.06</td><td>0.68</td></dl<>   | 0.06  | 0.68      |

|                      |           |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                     |        |                                                                                                                                                                                                                                                                                                             | Table 16                                                                                                                                                                                                                                                                          | US2 Met | al and Me                                                                                                                                                                                                                                 | talloid V                                                                                                                                                                                                       | Vater Qua   | lity Summary | / Statistics |        |          |                                                                                                                     |           |                                                                             |       |                                     |           |
|----------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|--------------|--------|----------|---------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------|-------|-------------------------------------|-----------|
|                      |           |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                     |        |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                   |         |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                 | Total Met   | als          |              |        |          |                                                                                                                     |           |                                                                             |       |                                     |           |
|                      | Aluminium | Antimony                                                                                                                                                                                                                                                                                                                                                                                   | Arsenic                                                                                                                                                                                                                                                                                                                                                          | Beryllium                                                                                                                                                                                                                                                                                                                                           | Barium | Cadmium                                                                                                                                                                                                                                                                                                     | Chromiu<br>m                                                                                                                                                                                                                                                                      | Cobalt  | Copper                                                                                                                                                                                                                                    | Lead                                                                                                                                                                                                            | Lithium     | Manganese    | Molybdenum   | Nickel | Rubidium | Selenium                                                                                                            | Strontium | Uranium                                                                     | Zinc  | Boron                               | Iron      |
|                      | mg/L      | mg/L                                                                                                                                                                                                                                                                                                                                                                                       | mg/L                                                                                                                                                                                                                                                                                                                                                             | mg/L                                                                                                                                                                                                                                                                                                                                                | mg/L   | mg/L                                                                                                                                                                                                                                                                                                        | mg/L                                                                                                                                                                                                                                                                              | mg/L    | mg/L                                                                                                                                                                                                                                      | mg/L                                                                                                                                                                                                            | mg/L        | mg/L         | mg/L         | mg/L   | mg/L     | mg/L                                                                                                                | mg/L      | mg/L                                                                        | mg/L  | mg/L                                | mg/L      |
| Detection limit (DL) | 0.01      | 0.001                                                                                                                                                                                                                                                                                                                                                                                      | 0.001                                                                                                                                                                                                                                                                                                                                                            | 0.001                                                                                                                                                                                                                                                                                                                                               | 0.001  | 0.0001                                                                                                                                                                                                                                                                                                      | 0.001                                                                                                                                                                                                                                                                             | 0.001   | 0.001                                                                                                                                                                                                                                     | 0.001                                                                                                                                                                                                           | 0.001       | 0.001        | 0.001        | 0.001  | 0.001    | 0.01                                                                                                                | 0.001     | 0.001                                                                       | 0.005 | 0.05                                | 0.05      |
| Sample size (n)      | 9         | 9                                                                                                                                                                                                                                                                                                                                                                                          | 9                                                                                                                                                                                                                                                                                                                                                                | 9                                                                                                                                                                                                                                                                                                                                                   | 9      | 9                                                                                                                                                                                                                                                                                                           | 9                                                                                                                                                                                                                                                                                 | 9       | 9                                                                                                                                                                                                                                         | 9                                                                                                                                                                                                               | 9           | 9            | 9            | 9      | 9        | 9                                                                                                                   | 9         | 9                                                                           | 9     | 9                                   | 9         |
| n > DL               | 8         | 1                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                   | 9      | 0                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                 | 9       | 0                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                               | 9           | 9            | 1            | 8      | 9        | 0                                                                                                                   | 9         | 0                                                                           | 9     | 0                                   | 6         |
| Min                  | 0.01      | -                                                                                                                                                                                                                                                                                                                                                                                          | <dl< td=""><td><dl< td=""><td>0.017</td><td><dl< td=""><td>-</td><td>0.003</td><td><dl< td=""><td><dl< td=""><td>0.016</td><td>0.044</td><td>-</td><td>0.001</td><td>0.011</td><td><dl< td=""><td>0.044</td><td><dl< td=""><td>0.025</td><td><dl< td=""><td>0.05</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>         | <dl< td=""><td>0.017</td><td><dl< td=""><td>-</td><td>0.003</td><td><dl< td=""><td><dl< td=""><td>0.016</td><td>0.044</td><td>-</td><td>0.001</td><td>0.011</td><td><dl< td=""><td>0.044</td><td><dl< td=""><td>0.025</td><td><dl< td=""><td>0.05</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                      | 0.017  | <dl< td=""><td>-</td><td>0.003</td><td><dl< td=""><td><dl< td=""><td>0.016</td><td>0.044</td><td>-</td><td>0.001</td><td>0.011</td><td><dl< td=""><td>0.044</td><td><dl< td=""><td>0.025</td><td><dl< td=""><td>0.05</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                      | -                                                                                                                                                                                                                                                                                 | 0.003   | <dl< td=""><td><dl< td=""><td>0.016</td><td>0.044</td><td>-</td><td>0.001</td><td>0.011</td><td><dl< td=""><td>0.044</td><td><dl< td=""><td>0.025</td><td><dl< td=""><td>0.05</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>      | <dl< td=""><td>0.016</td><td>0.044</td><td>-</td><td>0.001</td><td>0.011</td><td><dl< td=""><td>0.044</td><td><dl< td=""><td>0.025</td><td><dl< td=""><td>0.05</td></dl<></td></dl<></td></dl<></td></dl<>      | 0.016       | 0.044        | -            | 0.001  | 0.011    | <dl< td=""><td>0.044</td><td><dl< td=""><td>0.025</td><td><dl< td=""><td>0.05</td></dl<></td></dl<></td></dl<>      | 0.044     | <dl< td=""><td>0.025</td><td><dl< td=""><td>0.05</td></dl<></td></dl<>      | 0.025 | <dl< td=""><td>0.05</td></dl<>      | 0.05      |
| Median               | 0.02      | -                                                                                                                                                                                                                                                                                                                                                                                          | <dl< td=""><td><dl< td=""><td>0.021</td><td><dl< td=""><td>-</td><td>0.007</td><td><dl< td=""><td><dl< td=""><td>0.019</td><td>0.094</td><td>-</td><td>0.029</td><td>0.015</td><td><dl< td=""><td>0.059</td><td><dl< td=""><td>0.039</td><td><dl< td=""><td>0.08</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>         | <dl< td=""><td>0.021</td><td><dl< td=""><td>-</td><td>0.007</td><td><dl< td=""><td><dl< td=""><td>0.019</td><td>0.094</td><td>-</td><td>0.029</td><td>0.015</td><td><dl< td=""><td>0.059</td><td><dl< td=""><td>0.039</td><td><dl< td=""><td>0.08</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                      | 0.021  | <dl< td=""><td>-</td><td>0.007</td><td><dl< td=""><td><dl< td=""><td>0.019</td><td>0.094</td><td>-</td><td>0.029</td><td>0.015</td><td><dl< td=""><td>0.059</td><td><dl< td=""><td>0.039</td><td><dl< td=""><td>0.08</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                      | -                                                                                                                                                                                                                                                                                 | 0.007   | <dl< td=""><td><dl< td=""><td>0.019</td><td>0.094</td><td>-</td><td>0.029</td><td>0.015</td><td><dl< td=""><td>0.059</td><td><dl< td=""><td>0.039</td><td><dl< td=""><td>0.08</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>      | <dl< td=""><td>0.019</td><td>0.094</td><td>-</td><td>0.029</td><td>0.015</td><td><dl< td=""><td>0.059</td><td><dl< td=""><td>0.039</td><td><dl< td=""><td>0.08</td></dl<></td></dl<></td></dl<></td></dl<>      | 0.019       | 0.094        | -            | 0.029  | 0.015    | <dl< td=""><td>0.059</td><td><dl< td=""><td>0.039</td><td><dl< td=""><td>0.08</td></dl<></td></dl<></td></dl<>      | 0.059     | <dl< td=""><td>0.039</td><td><dl< td=""><td>0.08</td></dl<></td></dl<>      | 0.039 | <dl< td=""><td>0.08</td></dl<>      | 0.08      |
| Mean                 | 0.11      | -                                                                                                                                                                                                                                                                                                                                                                                          | <dl< td=""><td><dl< td=""><td>0.021</td><td><dl< td=""><td>-</td><td>0.008</td><td><dl< td=""><td><dl< td=""><td>0.019</td><td>0.112</td><td>-</td><td>0.029</td><td>0.015</td><td><dl< td=""><td>0.057</td><td><dl< td=""><td>0.038</td><td><dl< td=""><td>0.07</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>         | <dl< td=""><td>0.021</td><td><dl< td=""><td>-</td><td>0.008</td><td><dl< td=""><td><dl< td=""><td>0.019</td><td>0.112</td><td>-</td><td>0.029</td><td>0.015</td><td><dl< td=""><td>0.057</td><td><dl< td=""><td>0.038</td><td><dl< td=""><td>0.07</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                      | 0.021  | <dl< td=""><td>-</td><td>0.008</td><td><dl< td=""><td><dl< td=""><td>0.019</td><td>0.112</td><td>-</td><td>0.029</td><td>0.015</td><td><dl< td=""><td>0.057</td><td><dl< td=""><td>0.038</td><td><dl< td=""><td>0.07</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                      | -                                                                                                                                                                                                                                                                                 | 0.008   | <dl< td=""><td><dl< td=""><td>0.019</td><td>0.112</td><td>-</td><td>0.029</td><td>0.015</td><td><dl< td=""><td>0.057</td><td><dl< td=""><td>0.038</td><td><dl< td=""><td>0.07</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>      | <dl< td=""><td>0.019</td><td>0.112</td><td>-</td><td>0.029</td><td>0.015</td><td><dl< td=""><td>0.057</td><td><dl< td=""><td>0.038</td><td><dl< td=""><td>0.07</td></dl<></td></dl<></td></dl<></td></dl<>      | 0.019       | 0.112        | -            | 0.029  | 0.015    | <dl< td=""><td>0.057</td><td><dl< td=""><td>0.038</td><td><dl< td=""><td>0.07</td></dl<></td></dl<></td></dl<>      | 0.057     | <dl< td=""><td>0.038</td><td><dl< td=""><td>0.07</td></dl<></td></dl<>      | 0.038 | <dl< td=""><td>0.07</td></dl<>      | 0.07      |
| SD                   | 0.25      | -                                                                                                                                                                                                                                                                                                                                                                                          | <dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td>-</td><td>0.005</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td>0.064</td><td>-</td><td>0.016</td><td>0.002</td><td><dl< td=""><td>0.006</td><td><dl< td=""><td>0.014</td><td><dl< td=""><td>0.04</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>         | <dl< td=""><td>0.003</td><td><dl< td=""><td>-</td><td>0.005</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td>0.064</td><td>-</td><td>0.016</td><td>0.002</td><td><dl< td=""><td>0.006</td><td><dl< td=""><td>0.014</td><td><dl< td=""><td>0.04</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                      | 0.003  | <dl< td=""><td>-</td><td>0.005</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td>0.064</td><td>-</td><td>0.016</td><td>0.002</td><td><dl< td=""><td>0.006</td><td><dl< td=""><td>0.014</td><td><dl< td=""><td>0.04</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                      | -                                                                                                                                                                                                                                                                                 | 0.005   | <dl< td=""><td><dl< td=""><td>0.002</td><td>0.064</td><td>-</td><td>0.016</td><td>0.002</td><td><dl< td=""><td>0.006</td><td><dl< td=""><td>0.014</td><td><dl< td=""><td>0.04</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>      | <dl< td=""><td>0.002</td><td>0.064</td><td>-</td><td>0.016</td><td>0.002</td><td><dl< td=""><td>0.006</td><td><dl< td=""><td>0.014</td><td><dl< td=""><td>0.04</td></dl<></td></dl<></td></dl<></td></dl<>      | 0.002       | 0.064        | -            | 0.016  | 0.002    | <dl< td=""><td>0.006</td><td><dl< td=""><td>0.014</td><td><dl< td=""><td>0.04</td></dl<></td></dl<></td></dl<>      | 0.006     | <dl< td=""><td>0.014</td><td><dl< td=""><td>0.04</td></dl<></td></dl<>      | 0.014 | <dl< td=""><td>0.04</td></dl<>      | 0.04      |
| 80th percentile      | 0.07      | -                                                                                                                                                                                                                                                                                                                                                                                          | <dl< td=""><td><dl< td=""><td>0.022</td><td><dl< td=""><td>-</td><td>0.009</td><td><dl< td=""><td><dl< td=""><td>0.020</td><td>0.141</td><td>-</td><td>0.037</td><td>0.016</td><td><dl< td=""><td>0.061</td><td><dl< td=""><td>0.045</td><td><dl< td=""><td>0.09</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>         | <dl< td=""><td>0.022</td><td><dl< td=""><td>-</td><td>0.009</td><td><dl< td=""><td><dl< td=""><td>0.020</td><td>0.141</td><td>-</td><td>0.037</td><td>0.016</td><td><dl< td=""><td>0.061</td><td><dl< td=""><td>0.045</td><td><dl< td=""><td>0.09</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                      | 0.022  | <dl< td=""><td>-</td><td>0.009</td><td><dl< td=""><td><dl< td=""><td>0.020</td><td>0.141</td><td>-</td><td>0.037</td><td>0.016</td><td><dl< td=""><td>0.061</td><td><dl< td=""><td>0.045</td><td><dl< td=""><td>0.09</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                      | -                                                                                                                                                                                                                                                                                 | 0.009   | <dl< td=""><td><dl< td=""><td>0.020</td><td>0.141</td><td>-</td><td>0.037</td><td>0.016</td><td><dl< td=""><td>0.061</td><td><dl< td=""><td>0.045</td><td><dl< td=""><td>0.09</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>      | <dl< td=""><td>0.020</td><td>0.141</td><td>-</td><td>0.037</td><td>0.016</td><td><dl< td=""><td>0.061</td><td><dl< td=""><td>0.045</td><td><dl< td=""><td>0.09</td></dl<></td></dl<></td></dl<></td></dl<>      | 0.020       | 0.141        | -            | 0.037  | 0.016    | <dl< td=""><td>0.061</td><td><dl< td=""><td>0.045</td><td><dl< td=""><td>0.09</td></dl<></td></dl<></td></dl<>      | 0.061     | <dl< td=""><td>0.045</td><td><dl< td=""><td>0.09</td></dl<></td></dl<>      | 0.045 | <dl< td=""><td>0.09</td></dl<>      | 0.09      |
| Max                  | 0.77      | 0.001                                                                                                                                                                                                                                                                                                                                                                                      | <dl< td=""><td><dl< td=""><td>0.026</td><td><dl< td=""><td>0.002</td><td>0.018</td><td><dl< td=""><td><dl< td=""><td>0.022</td><td>0.257</td><td>0.002</td><td>0.056</td><td>0.016</td><td><dl< td=""><td>0.064</td><td><dl< td=""><td>0.068</td><td><dl< td=""><td>0.14</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.026</td><td><dl< td=""><td>0.002</td><td>0.018</td><td><dl< td=""><td><dl< td=""><td>0.022</td><td>0.257</td><td>0.002</td><td>0.056</td><td>0.016</td><td><dl< td=""><td>0.064</td><td><dl< td=""><td>0.068</td><td><dl< td=""><td>0.14</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>              | 0.026  | <dl< td=""><td>0.002</td><td>0.018</td><td><dl< td=""><td><dl< td=""><td>0.022</td><td>0.257</td><td>0.002</td><td>0.056</td><td>0.016</td><td><dl< td=""><td>0.064</td><td><dl< td=""><td>0.068</td><td><dl< td=""><td>0.14</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>              | 0.002                                                                                                                                                                                                                                                                             | 0.018   | <dl< td=""><td><dl< td=""><td>0.022</td><td>0.257</td><td>0.002</td><td>0.056</td><td>0.016</td><td><dl< td=""><td>0.064</td><td><dl< td=""><td>0.068</td><td><dl< td=""><td>0.14</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>  | <dl< td=""><td>0.022</td><td>0.257</td><td>0.002</td><td>0.056</td><td>0.016</td><td><dl< td=""><td>0.064</td><td><dl< td=""><td>0.068</td><td><dl< td=""><td>0.14</td></dl<></td></dl<></td></dl<></td></dl<>  | 0.022       | 0.257        | 0.002        | 0.056  | 0.016    | <dl< td=""><td>0.064</td><td><dl< td=""><td>0.068</td><td><dl< td=""><td>0.14</td></dl<></td></dl<></td></dl<>      | 0.064     | <dl< td=""><td>0.068</td><td><dl< td=""><td>0.14</td></dl<></td></dl<>      | 0.068 | <dl< td=""><td>0.14</td></dl<>      | 0.14      |
|                      |           |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                     |        |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                   |         |                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                               | Dissolved N | letals       |              |        |          |                                                                                                                     |           |                                                                             |       |                                     |           |
|                      | Aluminium | Antimony                                                                                                                                                                                                                                                                                                                                                                                   | Arsenic                                                                                                                                                                                                                                                                                                                                                          | Beryllium                                                                                                                                                                                                                                                                                                                                           | Barium | Cadmium                                                                                                                                                                                                                                                                                                     | Chromiu<br>m                                                                                                                                                                                                                                                                      | Cobalt  | Copper                                                                                                                                                                                                                                    | Lead                                                                                                                                                                                                            | Lithium     | Manganese    | Molybdenum   | Nickel | Rubidium | Selenium                                                                                                            | Strontium | Uranium                                                                     | Zinc  | Boron                               | Iron      |
|                      | mg/L      | mg/L                                                                                                                                                                                                                                                                                                                                                                                       | mg/L                                                                                                                                                                                                                                                                                                                                                             | mg/L                                                                                                                                                                                                                                                                                                                                                | mg/L   | mg/L                                                                                                                                                                                                                                                                                                        | mg/L                                                                                                                                                                                                                                                                              | mg/L    | mg/L                                                                                                                                                                                                                                      | mg/L                                                                                                                                                                                                            | mg/L        | mg/L         | mg/L         | mg/L   | mg/L     | mg/L                                                                                                                | mg/L      | mg/L                                                                        | mg/L  | mg/L                                | mg/L      |
| Detection limit (DL) | 0.01      | 0.001                                                                                                                                                                                                                                                                                                                                                                                      | 0.001                                                                                                                                                                                                                                                                                                                                                            | 0.001                                                                                                                                                                                                                                                                                                                                               | 0.001  | 0.0001                                                                                                                                                                                                                                                                                                      | 0.001                                                                                                                                                                                                                                                                             | 0.001   | 0.001                                                                                                                                                                                                                                     | 0.001                                                                                                                                                                                                           | 0.001       | 0.001        | 0.001        | 0.001  | 0.001    | 0.01                                                                                                                | 0.001     | 0.001                                                                       | 0.005 | 0.05                                | 0.05      |
| Sample size (n)      | 9         | 9                                                                                                                                                                                                                                                                                                                                                                                          | 9                                                                                                                                                                                                                                                                                                                                                                | 9                                                                                                                                                                                                                                                                                                                                                   | 9      | 9                                                                                                                                                                                                                                                                                                           | 9                                                                                                                                                                                                                                                                                 | 9       | 9                                                                                                                                                                                                                                         | 9                                                                                                                                                                                                               | 9           | 9            | 9            | 9      | 9        | 9                                                                                                                   | 9         | 9                                                                           | 9     | 9                                   | 9         |
| n > DL               | 2         | 0                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                   | 9      | 0                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                 | 9       | 0                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                               | 9           | 9            | 1            | 9      | 7        | 0                                                                                                                   | 9         | 0                                                                           | 9     | 0                                   | 3         |
| Min                  | 0.03      | <dl< td=""><td>-</td><td><dl< td=""><td>0.006</td><td><dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td><dl< td=""><td>0.014</td><td>0.040</td><td>-</td><td>0.019</td><td>0.001</td><td><dl< td=""><td>0.045</td><td><dl< td=""><td>0.021</td><td><dl< td=""><td>0.05</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>         | -                                                                                                                                                                                                                                                                                                                                                                | <dl< td=""><td>0.006</td><td><dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td><dl< td=""><td>0.014</td><td>0.040</td><td>-</td><td>0.019</td><td>0.001</td><td><dl< td=""><td>0.045</td><td><dl< td=""><td>0.021</td><td><dl< td=""><td>0.05</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>      | 0.006  | <dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td><dl< td=""><td>0.014</td><td>0.040</td><td>-</td><td>0.019</td><td>0.001</td><td><dl< td=""><td>0.045</td><td><dl< td=""><td>0.021</td><td><dl< td=""><td>0.05</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>      | <dl< td=""><td>0.003</td><td><dl< td=""><td><dl< td=""><td>0.014</td><td>0.040</td><td>-</td><td>0.019</td><td>0.001</td><td><dl< td=""><td>0.045</td><td><dl< td=""><td>0.021</td><td><dl< td=""><td>0.05</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>      | 0.003   | <dl< td=""><td><dl< td=""><td>0.014</td><td>0.040</td><td>-</td><td>0.019</td><td>0.001</td><td><dl< td=""><td>0.045</td><td><dl< td=""><td>0.021</td><td><dl< td=""><td>0.05</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>      | <dl< td=""><td>0.014</td><td>0.040</td><td>-</td><td>0.019</td><td>0.001</td><td><dl< td=""><td>0.045</td><td><dl< td=""><td>0.021</td><td><dl< td=""><td>0.05</td></dl<></td></dl<></td></dl<></td></dl<>      | 0.014       | 0.040        | -            | 0.019  | 0.001    | <dl< td=""><td>0.045</td><td><dl< td=""><td>0.021</td><td><dl< td=""><td>0.05</td></dl<></td></dl<></td></dl<>      | 0.045     | <dl< td=""><td>0.021</td><td><dl< td=""><td>0.05</td></dl<></td></dl<>      | 0.021 | <dl< td=""><td>0.05</td></dl<>      | 0.05      |
| Median               | -         | <dl< td=""><td>-</td><td><dl< td=""><td>0.019</td><td><dl< td=""><td><dl< td=""><td>0.006</td><td><dl< td=""><td><dl< td=""><td>0.018</td><td>0.086</td><td>-</td><td>0.031</td><td>0.014</td><td><dl< td=""><td>0.056</td><td><dl< td=""><td>0.030</td><td><dl< td=""><td>0.025</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>        | -                                                                                                                                                                                                                                                                                                                                                                | <dl< td=""><td>0.019</td><td><dl< td=""><td><dl< td=""><td>0.006</td><td><dl< td=""><td><dl< td=""><td>0.018</td><td>0.086</td><td>-</td><td>0.031</td><td>0.014</td><td><dl< td=""><td>0.056</td><td><dl< td=""><td>0.030</td><td><dl< td=""><td>0.025</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>     | 0.019  | <dl< td=""><td><dl< td=""><td>0.006</td><td><dl< td=""><td><dl< td=""><td>0.018</td><td>0.086</td><td>-</td><td>0.031</td><td>0.014</td><td><dl< td=""><td>0.056</td><td><dl< td=""><td>0.030</td><td><dl< td=""><td>0.025</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>     | <dl< td=""><td>0.006</td><td><dl< td=""><td><dl< td=""><td>0.018</td><td>0.086</td><td>-</td><td>0.031</td><td>0.014</td><td><dl< td=""><td>0.056</td><td><dl< td=""><td>0.030</td><td><dl< td=""><td>0.025</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>     | 0.006   | <dl< td=""><td><dl< td=""><td>0.018</td><td>0.086</td><td>-</td><td>0.031</td><td>0.014</td><td><dl< td=""><td>0.056</td><td><dl< td=""><td>0.030</td><td><dl< td=""><td>0.025</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>     | <dl< td=""><td>0.018</td><td>0.086</td><td>-</td><td>0.031</td><td>0.014</td><td><dl< td=""><td>0.056</td><td><dl< td=""><td>0.030</td><td><dl< td=""><td>0.025</td></dl<></td></dl<></td></dl<></td></dl<>     | 0.018       | 0.086        | -            | 0.031  | 0.014    | <dl< td=""><td>0.056</td><td><dl< td=""><td>0.030</td><td><dl< td=""><td>0.025</td></dl<></td></dl<></td></dl<>     | 0.056     | <dl< td=""><td>0.030</td><td><dl< td=""><td>0.025</td></dl<></td></dl<>     | 0.030 | <dl< td=""><td>0.025</td></dl<>     | 0.025     |
| Mean                 | -         | <dl< td=""><td>-</td><td><dl< td=""><td>0.018</td><td><dl< td=""><td><dl< td=""><td>0.007</td><td><dl< td=""><td><dl< td=""><td>0.018</td><td>0.103</td><td>-</td><td>0.031</td><td>0.011</td><td><dl< td=""><td>0.055</td><td><dl< td=""><td>0.035</td><td><dl< td=""><td>0.0377778</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | -                                                                                                                                                                                                                                                                                                                                                                | <dl< td=""><td>0.018</td><td><dl< td=""><td><dl< td=""><td>0.007</td><td><dl< td=""><td><dl< td=""><td>0.018</td><td>0.103</td><td>-</td><td>0.031</td><td>0.011</td><td><dl< td=""><td>0.055</td><td><dl< td=""><td>0.035</td><td><dl< td=""><td>0.0377778</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.018  | <dl< td=""><td><dl< td=""><td>0.007</td><td><dl< td=""><td><dl< td=""><td>0.018</td><td>0.103</td><td>-</td><td>0.031</td><td>0.011</td><td><dl< td=""><td>0.055</td><td><dl< td=""><td>0.035</td><td><dl< td=""><td>0.0377778</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.007</td><td><dl< td=""><td><dl< td=""><td>0.018</td><td>0.103</td><td>-</td><td>0.031</td><td>0.011</td><td><dl< td=""><td>0.055</td><td><dl< td=""><td>0.035</td><td><dl< td=""><td>0.0377778</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.007   | <dl< td=""><td><dl< td=""><td>0.018</td><td>0.103</td><td>-</td><td>0.031</td><td>0.011</td><td><dl< td=""><td>0.055</td><td><dl< td=""><td>0.035</td><td><dl< td=""><td>0.0377778</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.018</td><td>0.103</td><td>-</td><td>0.031</td><td>0.011</td><td><dl< td=""><td>0.055</td><td><dl< td=""><td>0.035</td><td><dl< td=""><td>0.0377778</td></dl<></td></dl<></td></dl<></td></dl<> | 0.018       | 0.103        | -            | 0.031  | 0.011    | <dl< td=""><td>0.055</td><td><dl< td=""><td>0.035</td><td><dl< td=""><td>0.0377778</td></dl<></td></dl<></td></dl<> | 0.055     | <dl< td=""><td>0.035</td><td><dl< td=""><td>0.0377778</td></dl<></td></dl<> | 0.035 | <dl< td=""><td>0.0377778</td></dl<> | 0.0377778 |
| SD                   | -         | <dl< td=""><td>-</td><td><dl< td=""><td>0.005</td><td><dl< td=""><td><dl< td=""><td>0.004</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td>0.056</td><td>-</td><td>0.010</td><td>0.006</td><td><dl< td=""><td>0.005</td><td><dl< td=""><td>0.013</td><td><dl< td=""><td>0.0206324</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | -                                                                                                                                                                                                                                                                                                                                                                | <dl< td=""><td>0.005</td><td><dl< td=""><td><dl< td=""><td>0.004</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td>0.056</td><td>-</td><td>0.010</td><td>0.006</td><td><dl< td=""><td>0.005</td><td><dl< td=""><td>0.013</td><td><dl< td=""><td>0.0206324</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.005  | <dl< td=""><td><dl< td=""><td>0.004</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td>0.056</td><td>-</td><td>0.010</td><td>0.006</td><td><dl< td=""><td>0.005</td><td><dl< td=""><td>0.013</td><td><dl< td=""><td>0.0206324</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.004</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td>0.056</td><td>-</td><td>0.010</td><td>0.006</td><td><dl< td=""><td>0.005</td><td><dl< td=""><td>0.013</td><td><dl< td=""><td>0.0206324</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.004   | <dl< td=""><td><dl< td=""><td>0.002</td><td>0.056</td><td>-</td><td>0.010</td><td>0.006</td><td><dl< td=""><td>0.005</td><td><dl< td=""><td>0.013</td><td><dl< td=""><td>0.0206324</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.002</td><td>0.056</td><td>-</td><td>0.010</td><td>0.006</td><td><dl< td=""><td>0.005</td><td><dl< td=""><td>0.013</td><td><dl< td=""><td>0.0206324</td></dl<></td></dl<></td></dl<></td></dl<> | 0.002       | 0.056        | -            | 0.010  | 0.006    | <dl< td=""><td>0.005</td><td><dl< td=""><td>0.013</td><td><dl< td=""><td>0.0206324</td></dl<></td></dl<></td></dl<> | 0.005     | <dl< td=""><td>0.013</td><td><dl< td=""><td>0.0206324</td></dl<></td></dl<> | 0.013 | <dl< td=""><td>0.0206324</td></dl<> | 0.0206324 |
| 80th percentile      | -         | <dl< td=""><td>-</td><td><dl< td=""><td>0.021</td><td><dl< td=""><td><dl< td=""><td>0.008</td><td><dl< td=""><td><dl< td=""><td>0.018</td><td>0.135</td><td>-</td><td>0.039</td><td>0.014</td><td><dl< td=""><td>0.058</td><td><dl< td=""><td>0.042</td><td><dl< td=""><td>0.054</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>        | -                                                                                                                                                                                                                                                                                                                                                                | <dl< td=""><td>0.021</td><td><dl< td=""><td><dl< td=""><td>0.008</td><td><dl< td=""><td><dl< td=""><td>0.018</td><td>0.135</td><td>-</td><td>0.039</td><td>0.014</td><td><dl< td=""><td>0.058</td><td><dl< td=""><td>0.042</td><td><dl< td=""><td>0.054</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>     | 0.021  | <dl< td=""><td><dl< td=""><td>0.008</td><td><dl< td=""><td><dl< td=""><td>0.018</td><td>0.135</td><td>-</td><td>0.039</td><td>0.014</td><td><dl< td=""><td>0.058</td><td><dl< td=""><td>0.042</td><td><dl< td=""><td>0.054</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>     | <dl< td=""><td>0.008</td><td><dl< td=""><td><dl< td=""><td>0.018</td><td>0.135</td><td>-</td><td>0.039</td><td>0.014</td><td><dl< td=""><td>0.058</td><td><dl< td=""><td>0.042</td><td><dl< td=""><td>0.054</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>     | 0.008   | <dl< td=""><td><dl< td=""><td>0.018</td><td>0.135</td><td>-</td><td>0.039</td><td>0.014</td><td><dl< td=""><td>0.058</td><td><dl< td=""><td>0.042</td><td><dl< td=""><td>0.054</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>     | <dl< td=""><td>0.018</td><td>0.135</td><td>-</td><td>0.039</td><td>0.014</td><td><dl< td=""><td>0.058</td><td><dl< td=""><td>0.042</td><td><dl< td=""><td>0.054</td></dl<></td></dl<></td></dl<></td></dl<>     | 0.018       | 0.135        | -            | 0.039  | 0.014    | <dl< td=""><td>0.058</td><td><dl< td=""><td>0.042</td><td><dl< td=""><td>0.054</td></dl<></td></dl<></td></dl<>     | 0.058     | <dl< td=""><td>0.042</td><td><dl< td=""><td>0.054</td></dl<></td></dl<>     | 0.042 | <dl< td=""><td>0.054</td></dl<>     | 0.054     |
| Max                  | 0.1       | <dl< td=""><td>0.004</td><td><dl< td=""><td>0.023</td><td><dl< td=""><td><dl< td=""><td>0.015</td><td><dl< td=""><td><dl< td=""><td>0.020</td><td>0.224</td><td>0.001</td><td>0.046</td><td>0.015</td><td><dl< td=""><td>0.061</td><td><dl< td=""><td>0.063</td><td><dl< td=""><td>0.08</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.004                                                                                                                                                                                                                                                                                                                                                            | <dl< td=""><td>0.023</td><td><dl< td=""><td><dl< td=""><td>0.015</td><td><dl< td=""><td><dl< td=""><td>0.020</td><td>0.224</td><td>0.001</td><td>0.046</td><td>0.015</td><td><dl< td=""><td>0.061</td><td><dl< td=""><td>0.063</td><td><dl< td=""><td>0.08</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>  | 0.023  | <dl< td=""><td><dl< td=""><td>0.015</td><td><dl< td=""><td><dl< td=""><td>0.020</td><td>0.224</td><td>0.001</td><td>0.046</td><td>0.015</td><td><dl< td=""><td>0.061</td><td><dl< td=""><td>0.063</td><td><dl< td=""><td>0.08</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>  | <dl< td=""><td>0.015</td><td><dl< td=""><td><dl< td=""><td>0.020</td><td>0.224</td><td>0.001</td><td>0.046</td><td>0.015</td><td><dl< td=""><td>0.061</td><td><dl< td=""><td>0.063</td><td><dl< td=""><td>0.08</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>  | 0.015   | <dl< td=""><td><dl< td=""><td>0.020</td><td>0.224</td><td>0.001</td><td>0.046</td><td>0.015</td><td><dl< td=""><td>0.061</td><td><dl< td=""><td>0.063</td><td><dl< td=""><td>0.08</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>  | <dl< td=""><td>0.020</td><td>0.224</td><td>0.001</td><td>0.046</td><td>0.015</td><td><dl< td=""><td>0.061</td><td><dl< td=""><td>0.063</td><td><dl< td=""><td>0.08</td></dl<></td></dl<></td></dl<></td></dl<>  | 0.020       | 0.224        | 0.001        | 0.046  | 0.015    | <dl< td=""><td>0.061</td><td><dl< td=""><td>0.063</td><td><dl< td=""><td>0.08</td></dl<></td></dl<></td></dl<>      | 0.061     | <dl< td=""><td>0.063</td><td><dl< td=""><td>0.08</td></dl<></td></dl<>      | 0.063 | <dl< td=""><td>0.08</td></dl<>      | 0.08      |

|                      |             |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                         |        |                                                                                                                                                                                                                                                                                                                 | Table 17                                                                                                                                                                                                                                                                              | DS1 Met | al and Me                                                                                                                                                                                                                                     | talloid V                                                                                                                                                                                                           | Vater Qua       | lity Summary | / Statistics |        |          |                                                                                                                     |           |                                                                             |       |                                     |           |
|----------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|--------------|--------|----------|---------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------|-------|-------------------------------------|-----------|
|                      |             |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                         |        |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                       |         |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                     | Total Met       | als          |              |        |          |                                                                                                                     |           |                                                                             |       |                                     |           |
|                      | Aluminium   | Antimony                                                                                                                                                                                                                                                                                                                                                                                                    | Arsenic                                                                                                                                                                                                                                                                                                                                                                           | Beryllium                                                                                                                                                                                                                                                                                                                                               | Barium | Cadmium                                                                                                                                                                                                                                                                                                         | Chromiu<br>m                                                                                                                                                                                                                                                                          | Cobalt  | Copper                                                                                                                                                                                                                                        | Lead                                                                                                                                                                                                                | Lithium         | Manganese    | Molybdenum   | Nickel | Rubidium | Selenium                                                                                                            | Strontium | Uranium                                                                     | Zinc  | Boron                               | Iron      |
|                      | mg/L        | mg/L                                                                                                                                                                                                                                                                                                                                                                                                        | mg/L                                                                                                                                                                                                                                                                                                                                                                              | mg/L                                                                                                                                                                                                                                                                                                                                                    | mg/L   | mg/L                                                                                                                                                                                                                                                                                                            | mg/L                                                                                                                                                                                                                                                                                  | mg/L    | mg/L                                                                                                                                                                                                                                          | mg/L                                                                                                                                                                                                                | mg/L            | mg/L         | mg/L         | mg/L   | mg/L     | mg/L                                                                                                                | mg/L      | mg/L                                                                        | mg/L  | mg/L                                | mg/L      |
| Detection limit (DL) | 0.01        | 0.001                                                                                                                                                                                                                                                                                                                                                                                                       | 0.001                                                                                                                                                                                                                                                                                                                                                                             | 0.001                                                                                                                                                                                                                                                                                                                                                   | 0.001  | 0.0001                                                                                                                                                                                                                                                                                                          | 0.001                                                                                                                                                                                                                                                                                 | 0.001   | 0.001                                                                                                                                                                                                                                         | 0.001                                                                                                                                                                                                               | 0.001           | 0.001        | 0.001        | 0.001  | 0.001    | 0.01                                                                                                                | 0.001     | 0.001                                                                       | 0.005 | 0.05                                | 0.05      |
| Sample size (n)      | 16          | 16                                                                                                                                                                                                                                                                                                                                                                                                          | 16                                                                                                                                                                                                                                                                                                                                                                                | 16                                                                                                                                                                                                                                                                                                                                                      | 16     | 16                                                                                                                                                                                                                                                                                                              | 16                                                                                                                                                                                                                                                                                    | 16      | 16                                                                                                                                                                                                                                            | 16                                                                                                                                                                                                                  | 16              | 16           | 16           | 16     | 16       | 16                                                                                                                  | 16        | 16                                                                          | 16    | 16                                  | 16        |
| n > DL               | 12          | 0                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                       | 16     | 0                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                     | 16      | 0                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                   | 16              | 16           | 3            | 16     | 16       | 0                                                                                                                   | 16        | 0                                                                           | 16    | 0                                   | 5         |
| Min                  | 0.01        | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.013</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.008</td><td>0.043</td><td>0.001</td><td>0.021</td><td>0.006</td><td><dl< td=""><td>0.023</td><td><dl< td=""><td>0.018</td><td><dl< td=""><td>0.05</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>      | <dl< td=""><td><dl< td=""><td>0.013</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.008</td><td>0.043</td><td>0.001</td><td>0.021</td><td>0.006</td><td><dl< td=""><td>0.023</td><td><dl< td=""><td>0.018</td><td><dl< td=""><td>0.05</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>      | <dl< td=""><td>0.013</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.008</td><td>0.043</td><td>0.001</td><td>0.021</td><td>0.006</td><td><dl< td=""><td>0.023</td><td><dl< td=""><td>0.018</td><td><dl< td=""><td>0.05</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>      | 0.013  | <dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.008</td><td>0.043</td><td>0.001</td><td>0.021</td><td>0.006</td><td><dl< td=""><td>0.023</td><td><dl< td=""><td>0.018</td><td><dl< td=""><td>0.05</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>      | <dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.008</td><td>0.043</td><td>0.001</td><td>0.021</td><td>0.006</td><td><dl< td=""><td>0.023</td><td><dl< td=""><td>0.018</td><td><dl< td=""><td>0.05</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>      | 0.002   | <dl< td=""><td><dl< td=""><td>0.008</td><td>0.043</td><td>0.001</td><td>0.021</td><td>0.006</td><td><dl< td=""><td>0.023</td><td><dl< td=""><td>0.018</td><td><dl< td=""><td>0.05</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>      | <dl< td=""><td>0.008</td><td>0.043</td><td>0.001</td><td>0.021</td><td>0.006</td><td><dl< td=""><td>0.023</td><td><dl< td=""><td>0.018</td><td><dl< td=""><td>0.05</td></dl<></td></dl<></td></dl<></td></dl<>      | 0.008           | 0.043        | 0.001        | 0.021  | 0.006    | <dl< td=""><td>0.023</td><td><dl< td=""><td>0.018</td><td><dl< td=""><td>0.05</td></dl<></td></dl<></td></dl<>      | 0.023     | <dl< td=""><td>0.018</td><td><dl< td=""><td>0.05</td></dl<></td></dl<>      | 0.018 | <dl< td=""><td>0.05</td></dl<>      | 0.05      |
| Median               | 0.02        | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.019</td><td><dl< td=""><td><dl< td=""><td>0.005</td><td><dl< td=""><td><dl< td=""><td>0.016</td><td>0.062</td><td>0.001</td><td>0.031</td><td>0.014</td><td><dl< td=""><td>0.055</td><td><dl< td=""><td>0.038</td><td><dl< td=""><td>0.025</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>     | <dl< td=""><td><dl< td=""><td>0.019</td><td><dl< td=""><td><dl< td=""><td>0.005</td><td><dl< td=""><td><dl< td=""><td>0.016</td><td>0.062</td><td>0.001</td><td>0.031</td><td>0.014</td><td><dl< td=""><td>0.055</td><td><dl< td=""><td>0.038</td><td><dl< td=""><td>0.025</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>     | <dl< td=""><td>0.019</td><td><dl< td=""><td><dl< td=""><td>0.005</td><td><dl< td=""><td><dl< td=""><td>0.016</td><td>0.062</td><td>0.001</td><td>0.031</td><td>0.014</td><td><dl< td=""><td>0.055</td><td><dl< td=""><td>0.038</td><td><dl< td=""><td>0.025</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>     | 0.019  | <dl< td=""><td><dl< td=""><td>0.005</td><td><dl< td=""><td><dl< td=""><td>0.016</td><td>0.062</td><td>0.001</td><td>0.031</td><td>0.014</td><td><dl< td=""><td>0.055</td><td><dl< td=""><td>0.038</td><td><dl< td=""><td>0.025</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>     | <dl< td=""><td>0.005</td><td><dl< td=""><td><dl< td=""><td>0.016</td><td>0.062</td><td>0.001</td><td>0.031</td><td>0.014</td><td><dl< td=""><td>0.055</td><td><dl< td=""><td>0.038</td><td><dl< td=""><td>0.025</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>     | 0.005   | <dl< td=""><td><dl< td=""><td>0.016</td><td>0.062</td><td>0.001</td><td>0.031</td><td>0.014</td><td><dl< td=""><td>0.055</td><td><dl< td=""><td>0.038</td><td><dl< td=""><td>0.025</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>     | <dl< td=""><td>0.016</td><td>0.062</td><td>0.001</td><td>0.031</td><td>0.014</td><td><dl< td=""><td>0.055</td><td><dl< td=""><td>0.038</td><td><dl< td=""><td>0.025</td></dl<></td></dl<></td></dl<></td></dl<>     | 0.016           | 0.062        | 0.001        | 0.031  | 0.014    | <dl< td=""><td>0.055</td><td><dl< td=""><td>0.038</td><td><dl< td=""><td>0.025</td></dl<></td></dl<></td></dl<>     | 0.055     | <dl< td=""><td>0.038</td><td><dl< td=""><td>0.025</td></dl<></td></dl<>     | 0.038 | <dl< td=""><td>0.025</td></dl<>     | 0.025     |
| Mean                 | 0.025       | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.019</td><td><dl< td=""><td><dl< td=""><td>0.007</td><td><dl< td=""><td><dl< td=""><td>0.015</td><td>0.084</td><td>0.001</td><td>0.037</td><td>0.012</td><td><dl< td=""><td>0.048</td><td><dl< td=""><td>0.046</td><td><dl< td=""><td>0.0384375</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td>0.019</td><td><dl< td=""><td><dl< td=""><td>0.007</td><td><dl< td=""><td><dl< td=""><td>0.015</td><td>0.084</td><td>0.001</td><td>0.037</td><td>0.012</td><td><dl< td=""><td>0.048</td><td><dl< td=""><td>0.046</td><td><dl< td=""><td>0.0384375</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.019</td><td><dl< td=""><td><dl< td=""><td>0.007</td><td><dl< td=""><td><dl< td=""><td>0.015</td><td>0.084</td><td>0.001</td><td>0.037</td><td>0.012</td><td><dl< td=""><td>0.048</td><td><dl< td=""><td>0.046</td><td><dl< td=""><td>0.0384375</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.019  | <dl< td=""><td><dl< td=""><td>0.007</td><td><dl< td=""><td><dl< td=""><td>0.015</td><td>0.084</td><td>0.001</td><td>0.037</td><td>0.012</td><td><dl< td=""><td>0.048</td><td><dl< td=""><td>0.046</td><td><dl< td=""><td>0.0384375</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.007</td><td><dl< td=""><td><dl< td=""><td>0.015</td><td>0.084</td><td>0.001</td><td>0.037</td><td>0.012</td><td><dl< td=""><td>0.048</td><td><dl< td=""><td>0.046</td><td><dl< td=""><td>0.0384375</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.007   | <dl< td=""><td><dl< td=""><td>0.015</td><td>0.084</td><td>0.001</td><td>0.037</td><td>0.012</td><td><dl< td=""><td>0.048</td><td><dl< td=""><td>0.046</td><td><dl< td=""><td>0.0384375</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.015</td><td>0.084</td><td>0.001</td><td>0.037</td><td>0.012</td><td><dl< td=""><td>0.048</td><td><dl< td=""><td>0.046</td><td><dl< td=""><td>0.0384375</td></dl<></td></dl<></td></dl<></td></dl<> | 0.015           | 0.084        | 0.001        | 0.037  | 0.012    | <dl< td=""><td>0.048</td><td><dl< td=""><td>0.046</td><td><dl< td=""><td>0.0384375</td></dl<></td></dl<></td></dl<> | 0.048     | <dl< td=""><td>0.046</td><td><dl< td=""><td>0.0384375</td></dl<></td></dl<> | 0.046 | <dl< td=""><td>0.0384375</td></dl<> | 0.0384375 |
| SD                   | 0.030659419 | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td><dl< td=""><td>0.006</td><td><dl< td=""><td><dl< td=""><td>0.004</td><td>0.062</td><td>0.000</td><td>0.022</td><td>0.003</td><td><dl< td=""><td>0.013</td><td><dl< td=""><td>0.029</td><td><dl< td=""><td>0.0219635</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td><dl< td=""><td>0.006</td><td><dl< td=""><td><dl< td=""><td>0.004</td><td>0.062</td><td>0.000</td><td>0.022</td><td>0.003</td><td><dl< td=""><td>0.013</td><td><dl< td=""><td>0.029</td><td><dl< td=""><td>0.0219635</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.003</td><td><dl< td=""><td><dl< td=""><td>0.006</td><td><dl< td=""><td><dl< td=""><td>0.004</td><td>0.062</td><td>0.000</td><td>0.022</td><td>0.003</td><td><dl< td=""><td>0.013</td><td><dl< td=""><td>0.029</td><td><dl< td=""><td>0.0219635</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.003  | <dl< td=""><td><dl< td=""><td>0.006</td><td><dl< td=""><td><dl< td=""><td>0.004</td><td>0.062</td><td>0.000</td><td>0.022</td><td>0.003</td><td><dl< td=""><td>0.013</td><td><dl< td=""><td>0.029</td><td><dl< td=""><td>0.0219635</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.006</td><td><dl< td=""><td><dl< td=""><td>0.004</td><td>0.062</td><td>0.000</td><td>0.022</td><td>0.003</td><td><dl< td=""><td>0.013</td><td><dl< td=""><td>0.029</td><td><dl< td=""><td>0.0219635</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.006   | <dl< td=""><td><dl< td=""><td>0.004</td><td>0.062</td><td>0.000</td><td>0.022</td><td>0.003</td><td><dl< td=""><td>0.013</td><td><dl< td=""><td>0.029</td><td><dl< td=""><td>0.0219635</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.004</td><td>0.062</td><td>0.000</td><td>0.022</td><td>0.003</td><td><dl< td=""><td>0.013</td><td><dl< td=""><td>0.029</td><td><dl< td=""><td>0.0219635</td></dl<></td></dl<></td></dl<></td></dl<> | 0.004           | 0.062        | 0.000        | 0.022  | 0.003    | <dl< td=""><td>0.013</td><td><dl< td=""><td>0.029</td><td><dl< td=""><td>0.0219635</td></dl<></td></dl<></td></dl<> | 0.013     | <dl< td=""><td>0.029</td><td><dl< td=""><td>0.0219635</td></dl<></td></dl<> | 0.029 | <dl< td=""><td>0.0219635</td></dl<> | 0.0219635 |
| 80th percentile      | 0.02        | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.022</td><td><dl< td=""><td><dl< td=""><td>0.008</td><td><dl< td=""><td><dl< td=""><td>0.018</td><td>0.088</td><td>0.001</td><td>0.041</td><td>0.014</td><td><dl< td=""><td>0.059</td><td><dl< td=""><td>0.050</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>      | <dl< td=""><td><dl< td=""><td>0.022</td><td><dl< td=""><td><dl< td=""><td>0.008</td><td><dl< td=""><td><dl< td=""><td>0.018</td><td>0.088</td><td>0.001</td><td>0.041</td><td>0.014</td><td><dl< td=""><td>0.059</td><td><dl< td=""><td>0.050</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>      | <dl< td=""><td>0.022</td><td><dl< td=""><td><dl< td=""><td>0.008</td><td><dl< td=""><td><dl< td=""><td>0.018</td><td>0.088</td><td>0.001</td><td>0.041</td><td>0.014</td><td><dl< td=""><td>0.059</td><td><dl< td=""><td>0.050</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>      | 0.022  | <dl< td=""><td><dl< td=""><td>0.008</td><td><dl< td=""><td><dl< td=""><td>0.018</td><td>0.088</td><td>0.001</td><td>0.041</td><td>0.014</td><td><dl< td=""><td>0.059</td><td><dl< td=""><td>0.050</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>      | <dl< td=""><td>0.008</td><td><dl< td=""><td><dl< td=""><td>0.018</td><td>0.088</td><td>0.001</td><td>0.041</td><td>0.014</td><td><dl< td=""><td>0.059</td><td><dl< td=""><td>0.050</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>      | 0.008   | <dl< td=""><td><dl< td=""><td>0.018</td><td>0.088</td><td>0.001</td><td>0.041</td><td>0.014</td><td><dl< td=""><td>0.059</td><td><dl< td=""><td>0.050</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>      | <dl< td=""><td>0.018</td><td>0.088</td><td>0.001</td><td>0.041</td><td>0.014</td><td><dl< td=""><td>0.059</td><td><dl< td=""><td>0.050</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<>      | 0.018           | 0.088        | 0.001        | 0.041  | 0.014    | <dl< td=""><td>0.059</td><td><dl< td=""><td>0.050</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<>      | 0.059     | <dl< td=""><td>0.050</td><td><dl< td=""><td>0.06</td></dl<></td></dl<>      | 0.050 | <dl< td=""><td>0.06</td></dl<>      | 0.06      |
| Max                  | 0.13        | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.023</td><td><dl< td=""><td><dl< td=""><td>0.026</td><td><dl< td=""><td><dl< td=""><td>0.019</td><td>0.293</td><td>0.001</td><td>0.105</td><td>0.015</td><td><dl< td=""><td>0.060</td><td><dl< td=""><td>0.142</td><td><dl< td=""><td>0.09</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>      | <dl< td=""><td><dl< td=""><td>0.023</td><td><dl< td=""><td><dl< td=""><td>0.026</td><td><dl< td=""><td><dl< td=""><td>0.019</td><td>0.293</td><td>0.001</td><td>0.105</td><td>0.015</td><td><dl< td=""><td>0.060</td><td><dl< td=""><td>0.142</td><td><dl< td=""><td>0.09</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>      | <dl< td=""><td>0.023</td><td><dl< td=""><td><dl< td=""><td>0.026</td><td><dl< td=""><td><dl< td=""><td>0.019</td><td>0.293</td><td>0.001</td><td>0.105</td><td>0.015</td><td><dl< td=""><td>0.060</td><td><dl< td=""><td>0.142</td><td><dl< td=""><td>0.09</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>      | 0.023  | <dl< td=""><td><dl< td=""><td>0.026</td><td><dl< td=""><td><dl< td=""><td>0.019</td><td>0.293</td><td>0.001</td><td>0.105</td><td>0.015</td><td><dl< td=""><td>0.060</td><td><dl< td=""><td>0.142</td><td><dl< td=""><td>0.09</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>      | <dl< td=""><td>0.026</td><td><dl< td=""><td><dl< td=""><td>0.019</td><td>0.293</td><td>0.001</td><td>0.105</td><td>0.015</td><td><dl< td=""><td>0.060</td><td><dl< td=""><td>0.142</td><td><dl< td=""><td>0.09</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>      | 0.026   | <dl< td=""><td><dl< td=""><td>0.019</td><td>0.293</td><td>0.001</td><td>0.105</td><td>0.015</td><td><dl< td=""><td>0.060</td><td><dl< td=""><td>0.142</td><td><dl< td=""><td>0.09</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>      | <dl< td=""><td>0.019</td><td>0.293</td><td>0.001</td><td>0.105</td><td>0.015</td><td><dl< td=""><td>0.060</td><td><dl< td=""><td>0.142</td><td><dl< td=""><td>0.09</td></dl<></td></dl<></td></dl<></td></dl<>      | 0.019           | 0.293        | 0.001        | 0.105  | 0.015    | <dl< td=""><td>0.060</td><td><dl< td=""><td>0.142</td><td><dl< td=""><td>0.09</td></dl<></td></dl<></td></dl<>      | 0.060     | <dl< td=""><td>0.142</td><td><dl< td=""><td>0.09</td></dl<></td></dl<>      | 0.142 | <dl< td=""><td>0.09</td></dl<>      | 0.09      |
|                      |             |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                         |        |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                       |         |                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                   | )<br>issolved N | letals       |              |        |          |                                                                                                                     |           |                                                                             |       |                                     |           |
|                      | Aluminium   | Antimony                                                                                                                                                                                                                                                                                                                                                                                                    | Arsenic                                                                                                                                                                                                                                                                                                                                                                           | Beryllium                                                                                                                                                                                                                                                                                                                                               | Barium | Cadmium                                                                                                                                                                                                                                                                                                         | Chromiu<br>m                                                                                                                                                                                                                                                                          | Cobalt  | Copper                                                                                                                                                                                                                                        | Lead                                                                                                                                                                                                                | Lithium         | Manganese    | Molybdenum   | Nickel | Rubidium | Selenium                                                                                                            | Strontium | Uranium                                                                     | Zinc  | Boron                               | Iron      |
|                      | mg/L        | mg/L                                                                                                                                                                                                                                                                                                                                                                                                        | mg/L                                                                                                                                                                                                                                                                                                                                                                              | mg/L                                                                                                                                                                                                                                                                                                                                                    | mg/L   | mg/L                                                                                                                                                                                                                                                                                                            | mg/L                                                                                                                                                                                                                                                                                  | mg/L    | mg/L                                                                                                                                                                                                                                          | mg/L                                                                                                                                                                                                                | mg/L            | mg/L         | mg/L         | mg/L   | mg/L     | mg/L                                                                                                                | mg/L      | mg/L                                                                        | mg/L  | mg/L                                | mg/L      |
| Detection limit (DL) | 0.01        | 0.001                                                                                                                                                                                                                                                                                                                                                                                                       | 0.001                                                                                                                                                                                                                                                                                                                                                                             | 0.001                                                                                                                                                                                                                                                                                                                                                   | 0.001  | 0.0001                                                                                                                                                                                                                                                                                                          | 0.001                                                                                                                                                                                                                                                                                 | 0.001   | 0.001                                                                                                                                                                                                                                         | 0.001                                                                                                                                                                                                               | 0.001           | 0.001        | 0.001        | 0.001  | 0.001    | 0.01                                                                                                                | 0.001     | 0.001                                                                       | 0.005 | 0.05                                | 0.05      |
| Sample size (n)      | 15          | 15                                                                                                                                                                                                                                                                                                                                                                                                          | 15                                                                                                                                                                                                                                                                                                                                                                                | 15                                                                                                                                                                                                                                                                                                                                                      | 15     | 15                                                                                                                                                                                                                                                                                                              | 15                                                                                                                                                                                                                                                                                    | 15      | 15                                                                                                                                                                                                                                            | 15                                                                                                                                                                                                                  | 15              | 15           | 15           | 15     | 15       | 15                                                                                                                  | 15        | 15                                                                          | 15    | 15                                  | 15        |
| n > DL               | 4           | 0                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                       | 15     | 0                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                     | 15      | 1                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                   | 15              | 15           | 2            | 15     | 14       | 0                                                                                                                   | 15        | 0                                                                           | 15    | 0                                   | 1         |
| Min                  | 0.01        | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.013</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td>-</td><td><dl< td=""><td>0.009</td><td>0.039</td><td>0.001</td><td>0.017</td><td>0.001</td><td><dl< td=""><td>0.022</td><td><dl< td=""><td>0.013</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                         | <dl< td=""><td><dl< td=""><td>0.013</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td>-</td><td><dl< td=""><td>0.009</td><td>0.039</td><td>0.001</td><td>0.017</td><td>0.001</td><td><dl< td=""><td>0.022</td><td><dl< td=""><td>0.013</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                         | <dl< td=""><td>0.013</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td>-</td><td><dl< td=""><td>0.009</td><td>0.039</td><td>0.001</td><td>0.017</td><td>0.001</td><td><dl< td=""><td>0.022</td><td><dl< td=""><td>0.013</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                         | 0.013  | <dl< td=""><td><dl< td=""><td>0.002</td><td>-</td><td><dl< td=""><td>0.009</td><td>0.039</td><td>0.001</td><td>0.017</td><td>0.001</td><td><dl< td=""><td>0.022</td><td><dl< td=""><td>0.013</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                         | <dl< td=""><td>0.002</td><td>-</td><td><dl< td=""><td>0.009</td><td>0.039</td><td>0.001</td><td>0.017</td><td>0.001</td><td><dl< td=""><td>0.022</td><td><dl< td=""><td>0.013</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                         | 0.002   | -                                                                                                                                                                                                                                             | <dl< td=""><td>0.009</td><td>0.039</td><td>0.001</td><td>0.017</td><td>0.001</td><td><dl< td=""><td>0.022</td><td><dl< td=""><td>0.013</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>         | 0.009           | 0.039        | 0.001        | 0.017  | 0.001    | <dl< td=""><td>0.022</td><td><dl< td=""><td>0.013</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>         | 0.022     | <dl< td=""><td>0.013</td><td><dl< td=""><td>-</td></dl<></td></dl<>         | 0.013 | <dl< td=""><td>-</td></dl<>         | -         |
| Median               | 0.005       | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.020</td><td><dl< td=""><td><dl< td=""><td>0.004</td><td>-</td><td><dl< td=""><td>0.015</td><td>0.054</td><td>-</td><td>0.028</td><td>0.013</td><td><dl< td=""><td>0.052</td><td><dl< td=""><td>0.035</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                             | <dl< td=""><td><dl< td=""><td>0.020</td><td><dl< td=""><td><dl< td=""><td>0.004</td><td>-</td><td><dl< td=""><td>0.015</td><td>0.054</td><td>-</td><td>0.028</td><td>0.013</td><td><dl< td=""><td>0.052</td><td><dl< td=""><td>0.035</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                             | <dl< td=""><td>0.020</td><td><dl< td=""><td><dl< td=""><td>0.004</td><td>-</td><td><dl< td=""><td>0.015</td><td>0.054</td><td>-</td><td>0.028</td><td>0.013</td><td><dl< td=""><td>0.052</td><td><dl< td=""><td>0.035</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                             | 0.020  | <dl< td=""><td><dl< td=""><td>0.004</td><td>-</td><td><dl< td=""><td>0.015</td><td>0.054</td><td>-</td><td>0.028</td><td>0.013</td><td><dl< td=""><td>0.052</td><td><dl< td=""><td>0.035</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                             | <dl< td=""><td>0.004</td><td>-</td><td><dl< td=""><td>0.015</td><td>0.054</td><td>-</td><td>0.028</td><td>0.013</td><td><dl< td=""><td>0.052</td><td><dl< td=""><td>0.035</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                             | 0.004   | -                                                                                                                                                                                                                                             | <dl< td=""><td>0.015</td><td>0.054</td><td>-</td><td>0.028</td><td>0.013</td><td><dl< td=""><td>0.052</td><td><dl< td=""><td>0.035</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>             | 0.015           | 0.054        | -            | 0.028  | 0.013    | <dl< td=""><td>0.052</td><td><dl< td=""><td>0.035</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>         | 0.052     | <dl< td=""><td>0.035</td><td><dl< td=""><td>-</td></dl<></td></dl<>         | 0.035 | <dl< td=""><td>-</td></dl<>         | -         |
| Mean                 | 0.016333333 | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.019</td><td><dl< td=""><td><dl< td=""><td>0.006</td><td>-</td><td><dl< td=""><td>0.015</td><td>0.080</td><td>-</td><td>0.034</td><td>0.011</td><td><dl< td=""><td>0.078</td><td><dl< td=""><td>0.042</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                             | <dl< td=""><td><dl< td=""><td>0.019</td><td><dl< td=""><td><dl< td=""><td>0.006</td><td>-</td><td><dl< td=""><td>0.015</td><td>0.080</td><td>-</td><td>0.034</td><td>0.011</td><td><dl< td=""><td>0.078</td><td><dl< td=""><td>0.042</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                             | <dl< td=""><td>0.019</td><td><dl< td=""><td><dl< td=""><td>0.006</td><td>-</td><td><dl< td=""><td>0.015</td><td>0.080</td><td>-</td><td>0.034</td><td>0.011</td><td><dl< td=""><td>0.078</td><td><dl< td=""><td>0.042</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                             | 0.019  | <dl< td=""><td><dl< td=""><td>0.006</td><td>-</td><td><dl< td=""><td>0.015</td><td>0.080</td><td>-</td><td>0.034</td><td>0.011</td><td><dl< td=""><td>0.078</td><td><dl< td=""><td>0.042</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                             | <dl< td=""><td>0.006</td><td>-</td><td><dl< td=""><td>0.015</td><td>0.080</td><td>-</td><td>0.034</td><td>0.011</td><td><dl< td=""><td>0.078</td><td><dl< td=""><td>0.042</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                             | 0.006   | -                                                                                                                                                                                                                                             | <dl< td=""><td>0.015</td><td>0.080</td><td>-</td><td>0.034</td><td>0.011</td><td><dl< td=""><td>0.078</td><td><dl< td=""><td>0.042</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>             | 0.015           | 0.080        | -            | 0.034  | 0.011    | <dl< td=""><td>0.078</td><td><dl< td=""><td>0.042</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>         | 0.078     | <dl< td=""><td>0.042</td><td><dl< td=""><td>-</td></dl<></td></dl<>         | 0.042 | <dl< td=""><td>-</td></dl<>         | -         |
| SD                   | 0.032703575 | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td><dl< td=""><td>0.006</td><td>-</td><td><dl< td=""><td>0.003</td><td>0.068</td><td>-</td><td>0.022</td><td>0.004</td><td><dl< td=""><td>0.117</td><td><dl< td=""><td>0.030</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                             | <dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td><dl< td=""><td>0.006</td><td>-</td><td><dl< td=""><td>0.003</td><td>0.068</td><td>-</td><td>0.022</td><td>0.004</td><td><dl< td=""><td>0.117</td><td><dl< td=""><td>0.030</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                             | <dl< td=""><td>0.003</td><td><dl< td=""><td><dl< td=""><td>0.006</td><td>-</td><td><dl< td=""><td>0.003</td><td>0.068</td><td>-</td><td>0.022</td><td>0.004</td><td><dl< td=""><td>0.117</td><td><dl< td=""><td>0.030</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                             | 0.003  | <dl< td=""><td><dl< td=""><td>0.006</td><td>-</td><td><dl< td=""><td>0.003</td><td>0.068</td><td>-</td><td>0.022</td><td>0.004</td><td><dl< td=""><td>0.117</td><td><dl< td=""><td>0.030</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                             | <dl< td=""><td>0.006</td><td>-</td><td><dl< td=""><td>0.003</td><td>0.068</td><td>-</td><td>0.022</td><td>0.004</td><td><dl< td=""><td>0.117</td><td><dl< td=""><td>0.030</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                             | 0.006   | -                                                                                                                                                                                                                                             | <dl< td=""><td>0.003</td><td>0.068</td><td>-</td><td>0.022</td><td>0.004</td><td><dl< td=""><td>0.117</td><td><dl< td=""><td>0.030</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>             | 0.003           | 0.068        | -            | 0.022  | 0.004    | <dl< td=""><td>0.117</td><td><dl< td=""><td>0.030</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>         | 0.117     | <dl< td=""><td>0.030</td><td><dl< td=""><td>-</td></dl<></td></dl<>         | 0.030 | <dl< td=""><td>-</td></dl<>         | -         |
| 80th percentile      | 0.01        | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.020</td><td><dl< td=""><td><dl< td=""><td>0.007</td><td>-</td><td><dl< td=""><td>0.017</td><td>0.084</td><td>-</td><td>0.039</td><td>0.014</td><td><dl< td=""><td>0.059</td><td><dl< td=""><td>0.049</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                             | <dl< td=""><td><dl< td=""><td>0.020</td><td><dl< td=""><td><dl< td=""><td>0.007</td><td>-</td><td><dl< td=""><td>0.017</td><td>0.084</td><td>-</td><td>0.039</td><td>0.014</td><td><dl< td=""><td>0.059</td><td><dl< td=""><td>0.049</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                             | <dl< td=""><td>0.020</td><td><dl< td=""><td><dl< td=""><td>0.007</td><td>-</td><td><dl< td=""><td>0.017</td><td>0.084</td><td>-</td><td>0.039</td><td>0.014</td><td><dl< td=""><td>0.059</td><td><dl< td=""><td>0.049</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                             | 0.020  | <dl< td=""><td><dl< td=""><td>0.007</td><td>-</td><td><dl< td=""><td>0.017</td><td>0.084</td><td>-</td><td>0.039</td><td>0.014</td><td><dl< td=""><td>0.059</td><td><dl< td=""><td>0.049</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                             | <dl< td=""><td>0.007</td><td>-</td><td><dl< td=""><td>0.017</td><td>0.084</td><td>-</td><td>0.039</td><td>0.014</td><td><dl< td=""><td>0.059</td><td><dl< td=""><td>0.049</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                             | 0.007   | -                                                                                                                                                                                                                                             | <dl< td=""><td>0.017</td><td>0.084</td><td>-</td><td>0.039</td><td>0.014</td><td><dl< td=""><td>0.059</td><td><dl< td=""><td>0.049</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>             | 0.017           | 0.084        | -            | 0.039  | 0.014    | <dl< td=""><td>0.059</td><td><dl< td=""><td>0.049</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>         | 0.059     | <dl< td=""><td>0.049</td><td><dl< td=""><td>-</td></dl<></td></dl<>         | 0.049 | <dl< td=""><td>-</td></dl<>         | -         |
| Max                  | 0.13        | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.023</td><td><dl< td=""><td><dl< td=""><td>0.024</td><td>0.002</td><td><dl< td=""><td>0.018</td><td>0.304</td><td>0.002</td><td>0.101</td><td>0.015</td><td><dl< td=""><td>0.500</td><td><dl< td=""><td>0.143</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                  | <dl< td=""><td><dl< td=""><td>0.023</td><td><dl< td=""><td><dl< td=""><td>0.024</td><td>0.002</td><td><dl< td=""><td>0.018</td><td>0.304</td><td>0.002</td><td>0.101</td><td>0.015</td><td><dl< td=""><td>0.500</td><td><dl< td=""><td>0.143</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                  | <dl< td=""><td>0.023</td><td><dl< td=""><td><dl< td=""><td>0.024</td><td>0.002</td><td><dl< td=""><td>0.018</td><td>0.304</td><td>0.002</td><td>0.101</td><td>0.015</td><td><dl< td=""><td>0.500</td><td><dl< td=""><td>0.143</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                  | 0.023  | <dl< td=""><td><dl< td=""><td>0.024</td><td>0.002</td><td><dl< td=""><td>0.018</td><td>0.304</td><td>0.002</td><td>0.101</td><td>0.015</td><td><dl< td=""><td>0.500</td><td><dl< td=""><td>0.143</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                  | <dl< td=""><td>0.024</td><td>0.002</td><td><dl< td=""><td>0.018</td><td>0.304</td><td>0.002</td><td>0.101</td><td>0.015</td><td><dl< td=""><td>0.500</td><td><dl< td=""><td>0.143</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                  | 0.024   | 0.002                                                                                                                                                                                                                                         | <dl< td=""><td>0.018</td><td>0.304</td><td>0.002</td><td>0.101</td><td>0.015</td><td><dl< td=""><td>0.500</td><td><dl< td=""><td>0.143</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<>      | 0.018           | 0.304        | 0.002        | 0.101  | 0.015    | <dl< td=""><td>0.500</td><td><dl< td=""><td>0.143</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<>      | 0.500     | <dl< td=""><td>0.143</td><td><dl< td=""><td>0.06</td></dl<></td></dl<>      | 0.143 | <dl< td=""><td>0.06</td></dl<>      | 0.06      |

|                      |             |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                        |        |                                                                                                                                                                                                                                                                                                | Table 18                                                                                                                                                                                                                                                             | DS2 Met | al and Me                                                                                                                                                                                                                                | talloid V                                                                                                                                                                                                      | /ater Qua  | lity Summary | / Statistics |        |          |                                                                                                                |           |                                                                        |       |                                |      |
|----------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|--------------|--------|----------|----------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------|-------|--------------------------------|------|
|                      |             |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                        |        |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                | Total Met  | tals         |              |        |          |                                                                                                                |           |                                                                        |       |                                |      |
|                      | Aluminium   | Antim ony                                                                                                                                                                                                                                                                                                                                                                                  | Arsenic                                                                                                                                                                                                                                                                                                                                                          | Beryllium                                                                                                                                                                                                                                                                                                                              | Barium | Cadmium                                                                                                                                                                                                                                                                                        | Chromiu<br>m                                                                                                                                                                                                                                                         | Cobalt  | Copper                                                                                                                                                                                                                                   | Lead                                                                                                                                                                                                           | Lithium    | Manganese    | Molybdenum   | Nickel | Rubidium | Selenium                                                                                                       | Strontium | Uranium                                                                | Zinc  | Boron                          | Iron |
|                      | mg/L        | mg/L                                                                                                                                                                                                                                                                                                                                                                                       | mg/L                                                                                                                                                                                                                                                                                                                                                             | mg/L                                                                                                                                                                                                                                                                                                                                   | mg/L   | mg/L                                                                                                                                                                                                                                                                                           | mg/L                                                                                                                                                                                                                                                                 | mg/L    | mg/L                                                                                                                                                                                                                                     | mg/L                                                                                                                                                                                                           | mg/L       | mg/L         | mg/L         | mg/L   | mg/L     | mg/L                                                                                                           | mg/L      | mg/L                                                                   | mg/L  | mg/L                           | mg/L |
| Detection limit (DL) | 0.01        | 0.001                                                                                                                                                                                                                                                                                                                                                                                      | 0.001                                                                                                                                                                                                                                                                                                                                                            | 0.001                                                                                                                                                                                                                                                                                                                                  | 0.001  | 0.0001                                                                                                                                                                                                                                                                                         | 0.001                                                                                                                                                                                                                                                                | 0.001   | 0.001                                                                                                                                                                                                                                    | 0.001                                                                                                                                                                                                          | 0.001      | 0.001        | 0.001        | 0.001  | 0.001    | 0.01                                                                                                           | 0.001     | 0.001                                                                  | 0.005 | 0.05                           | 0.05 |
| Sample size (n)      | 16          | 16                                                                                                                                                                                                                                                                                                                                                                                         | 16                                                                                                                                                                                                                                                                                                                                                               | 16                                                                                                                                                                                                                                                                                                                                     | 16     | 16                                                                                                                                                                                                                                                                                             | 16                                                                                                                                                                                                                                                                   | 16      | 16                                                                                                                                                                                                                                       | 16                                                                                                                                                                                                             | 16         | 16           | 16           | 16     | 16       | 16                                                                                                             | 16        | 16                                                                     | 16    | 16                             | 16   |
| n > DL               | 15          | 2                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                      | 16     | 0                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                    | 15      | 0                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                              | 16         | 16           | 1            | 16     | 16       | 0                                                                                                              | 16        | 0                                                                      | 16    | 0                              | 9    |
| Min                  | 0.01        | 0.001                                                                                                                                                                                                                                                                                                                                                                                      | <dl< td=""><td><dl< td=""><td>0.013</td><td><dl< td=""><td>-</td><td>0.001</td><td><dl< td=""><td><dl< td=""><td>0.008</td><td>0.026</td><td>-</td><td>0.015</td><td>0.005</td><td><dl< td=""><td>0.021</td><td><dl< td=""><td>0.014</td><td><dl< td=""><td>0.05</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>         | <dl< td=""><td>0.013</td><td><dl< td=""><td>-</td><td>0.001</td><td><dl< td=""><td><dl< td=""><td>0.008</td><td>0.026</td><td>-</td><td>0.015</td><td>0.005</td><td><dl< td=""><td>0.021</td><td><dl< td=""><td>0.014</td><td><dl< td=""><td>0.05</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>         | 0.013  | <dl< td=""><td>-</td><td>0.001</td><td><dl< td=""><td><dl< td=""><td>0.008</td><td>0.026</td><td>-</td><td>0.015</td><td>0.005</td><td><dl< td=""><td>0.021</td><td><dl< td=""><td>0.014</td><td><dl< td=""><td>0.05</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>         | -                                                                                                                                                                                                                                                                    | 0.001   | <dl< td=""><td><dl< td=""><td>0.008</td><td>0.026</td><td>-</td><td>0.015</td><td>0.005</td><td><dl< td=""><td>0.021</td><td><dl< td=""><td>0.014</td><td><dl< td=""><td>0.05</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>     | <dl< td=""><td>0.008</td><td>0.026</td><td>-</td><td>0.015</td><td>0.005</td><td><dl< td=""><td>0.021</td><td><dl< td=""><td>0.014</td><td><dl< td=""><td>0.05</td></dl<></td></dl<></td></dl<></td></dl<>     | 0.008      | 0.026        | -            | 0.015  | 0.005    | <dl< td=""><td>0.021</td><td><dl< td=""><td>0.014</td><td><dl< td=""><td>0.05</td></dl<></td></dl<></td></dl<> | 0.021     | <dl< td=""><td>0.014</td><td><dl< td=""><td>0.05</td></dl<></td></dl<> | 0.014 | <dl< td=""><td>0.05</td></dl<> | 0.05 |
| Median               | 0.02        | -                                                                                                                                                                                                                                                                                                                                                                                          | <dl< td=""><td><dl< td=""><td>0.018</td><td><dl< td=""><td>-</td><td>0.003</td><td><dl< td=""><td><dl< td=""><td>0.016</td><td>0.045</td><td>-</td><td>0.024</td><td>0.013</td><td><dl< td=""><td>0.051</td><td><dl< td=""><td>0.035</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>         | <dl< td=""><td>0.018</td><td><dl< td=""><td>-</td><td>0.003</td><td><dl< td=""><td><dl< td=""><td>0.016</td><td>0.045</td><td>-</td><td>0.024</td><td>0.013</td><td><dl< td=""><td>0.051</td><td><dl< td=""><td>0.035</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>         | 0.018  | <dl< td=""><td>-</td><td>0.003</td><td><dl< td=""><td><dl< td=""><td>0.016</td><td>0.045</td><td>-</td><td>0.024</td><td>0.013</td><td><dl< td=""><td>0.051</td><td><dl< td=""><td>0.035</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>         | -                                                                                                                                                                                                                                                                    | 0.003   | <dl< td=""><td><dl< td=""><td>0.016</td><td>0.045</td><td>-</td><td>0.024</td><td>0.013</td><td><dl< td=""><td>0.051</td><td><dl< td=""><td>0.035</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>     | <dl< td=""><td>0.016</td><td>0.045</td><td>-</td><td>0.024</td><td>0.013</td><td><dl< td=""><td>0.051</td><td><dl< td=""><td>0.035</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<>     | 0.016      | 0.045        | -            | 0.024  | 0.013    | <dl< td=""><td>0.051</td><td><dl< td=""><td>0.035</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<> | 0.051     | <dl< td=""><td>0.035</td><td><dl< td=""><td>0.06</td></dl<></td></dl<> | 0.035 | <dl< td=""><td>0.06</td></dl<> | 0.06 |
| Mean                 | 0.03        | -                                                                                                                                                                                                                                                                                                                                                                                          | <dl< td=""><td><dl< td=""><td>0.018</td><td><dl< td=""><td>-</td><td>0.004</td><td><dl< td=""><td><dl< td=""><td>0.014</td><td>0.060</td><td>-</td><td>0.025</td><td>0.011</td><td><dl< td=""><td>0.047</td><td><dl< td=""><td>0.036</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>         | <dl< td=""><td>0.018</td><td><dl< td=""><td>-</td><td>0.004</td><td><dl< td=""><td><dl< td=""><td>0.014</td><td>0.060</td><td>-</td><td>0.025</td><td>0.011</td><td><dl< td=""><td>0.047</td><td><dl< td=""><td>0.036</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>         | 0.018  | <dl< td=""><td>-</td><td>0.004</td><td><dl< td=""><td><dl< td=""><td>0.014</td><td>0.060</td><td>-</td><td>0.025</td><td>0.011</td><td><dl< td=""><td>0.047</td><td><dl< td=""><td>0.036</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>         | -                                                                                                                                                                                                                                                                    | 0.004   | <dl< td=""><td><dl< td=""><td>0.014</td><td>0.060</td><td>-</td><td>0.025</td><td>0.011</td><td><dl< td=""><td>0.047</td><td><dl< td=""><td>0.036</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>     | <dl< td=""><td>0.014</td><td>0.060</td><td>-</td><td>0.025</td><td>0.011</td><td><dl< td=""><td>0.047</td><td><dl< td=""><td>0.036</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<>     | 0.014      | 0.060        | -            | 0.025  | 0.011    | <dl< td=""><td>0.047</td><td><dl< td=""><td>0.036</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<> | 0.047     | <dl< td=""><td>0.036</td><td><dl< td=""><td>0.06</td></dl<></td></dl<> | 0.036 | <dl< td=""><td>0.06</td></dl<> | 0.06 |
| SD                   | 0.03        | -                                                                                                                                                                                                                                                                                                                                                                                          | <dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td>-</td><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.003</td><td>0.041</td><td>-</td><td>0.008</td><td>0.003</td><td><dl< td=""><td>0.012</td><td><dl< td=""><td>0.015</td><td><dl< td=""><td>0.05</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>         | <dl< td=""><td>0.002</td><td><dl< td=""><td>-</td><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.003</td><td>0.041</td><td>-</td><td>0.008</td><td>0.003</td><td><dl< td=""><td>0.012</td><td><dl< td=""><td>0.015</td><td><dl< td=""><td>0.05</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>         | 0.002  | <dl< td=""><td>-</td><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.003</td><td>0.041</td><td>-</td><td>0.008</td><td>0.003</td><td><dl< td=""><td>0.012</td><td><dl< td=""><td>0.015</td><td><dl< td=""><td>0.05</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>         | -                                                                                                                                                                                                                                                                    | 0.002   | <dl< td=""><td><dl< td=""><td>0.003</td><td>0.041</td><td>-</td><td>0.008</td><td>0.003</td><td><dl< td=""><td>0.012</td><td><dl< td=""><td>0.015</td><td><dl< td=""><td>0.05</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>     | <dl< td=""><td>0.003</td><td>0.041</td><td>-</td><td>0.008</td><td>0.003</td><td><dl< td=""><td>0.012</td><td><dl< td=""><td>0.015</td><td><dl< td=""><td>0.05</td></dl<></td></dl<></td></dl<></td></dl<>     | 0.003      | 0.041        | -            | 0.008  | 0.003    | <dl< td=""><td>0.012</td><td><dl< td=""><td>0.015</td><td><dl< td=""><td>0.05</td></dl<></td></dl<></td></dl<> | 0.012     | <dl< td=""><td>0.015</td><td><dl< td=""><td>0.05</td></dl<></td></dl<> | 0.015 | <dl< td=""><td>0.05</td></dl<> | 0.05 |
| 80th percentile      | 0.03        | -                                                                                                                                                                                                                                                                                                                                                                                          | <dl< td=""><td><dl< td=""><td>0.020</td><td><dl< td=""><td>-</td><td>0.005</td><td><dl< td=""><td><dl< td=""><td>0.016</td><td>0.071</td><td>-</td><td>0.030</td><td>0.014</td><td><dl< td=""><td>0.056</td><td><dl< td=""><td>0.045</td><td><dl< td=""><td>0.08</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>         | <dl< td=""><td>0.020</td><td><dl< td=""><td>-</td><td>0.005</td><td><dl< td=""><td><dl< td=""><td>0.016</td><td>0.071</td><td>-</td><td>0.030</td><td>0.014</td><td><dl< td=""><td>0.056</td><td><dl< td=""><td>0.045</td><td><dl< td=""><td>0.08</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>         | 0.020  | <dl< td=""><td>-</td><td>0.005</td><td><dl< td=""><td><dl< td=""><td>0.016</td><td>0.071</td><td>-</td><td>0.030</td><td>0.014</td><td><dl< td=""><td>0.056</td><td><dl< td=""><td>0.045</td><td><dl< td=""><td>0.08</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>         | -                                                                                                                                                                                                                                                                    | 0.005   | <dl< td=""><td><dl< td=""><td>0.016</td><td>0.071</td><td>-</td><td>0.030</td><td>0.014</td><td><dl< td=""><td>0.056</td><td><dl< td=""><td>0.045</td><td><dl< td=""><td>0.08</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>     | <dl< td=""><td>0.016</td><td>0.071</td><td>-</td><td>0.030</td><td>0.014</td><td><dl< td=""><td>0.056</td><td><dl< td=""><td>0.045</td><td><dl< td=""><td>0.08</td></dl<></td></dl<></td></dl<></td></dl<>     | 0.016      | 0.071        | -            | 0.030  | 0.014    | <dl< td=""><td>0.056</td><td><dl< td=""><td>0.045</td><td><dl< td=""><td>0.08</td></dl<></td></dl<></td></dl<> | 0.056     | <dl< td=""><td>0.045</td><td><dl< td=""><td>0.08</td></dl<></td></dl<> | 0.045 | <dl< td=""><td>0.08</td></dl<> | 0.08 |
| Max                  | 0.10        | 0.002                                                                                                                                                                                                                                                                                                                                                                                      | <dl< td=""><td><dl< td=""><td>0.022</td><td><dl< td=""><td>0.003</td><td>0.008</td><td><dl< td=""><td><dl< td=""><td>0.018</td><td>0.192</td><td>0.001</td><td>0.042</td><td>0.015</td><td><dl< td=""><td>0.059</td><td><dl< td=""><td>0.080</td><td><dl< td=""><td>0.21</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.022</td><td><dl< td=""><td>0.003</td><td>0.008</td><td><dl< td=""><td><dl< td=""><td>0.018</td><td>0.192</td><td>0.001</td><td>0.042</td><td>0.015</td><td><dl< td=""><td>0.059</td><td><dl< td=""><td>0.080</td><td><dl< td=""><td>0.21</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.022  | <dl< td=""><td>0.003</td><td>0.008</td><td><dl< td=""><td><dl< td=""><td>0.018</td><td>0.192</td><td>0.001</td><td>0.042</td><td>0.015</td><td><dl< td=""><td>0.059</td><td><dl< td=""><td>0.080</td><td><dl< td=""><td>0.21</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.003                                                                                                                                                                                                                                                                | 0.008   | <dl< td=""><td><dl< td=""><td>0.018</td><td>0.192</td><td>0.001</td><td>0.042</td><td>0.015</td><td><dl< td=""><td>0.059</td><td><dl< td=""><td>0.080</td><td><dl< td=""><td>0.21</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.018</td><td>0.192</td><td>0.001</td><td>0.042</td><td>0.015</td><td><dl< td=""><td>0.059</td><td><dl< td=""><td>0.080</td><td><dl< td=""><td>0.21</td></dl<></td></dl<></td></dl<></td></dl<> | 0.018      | 0.192        | 0.001        | 0.042  | 0.015    | <dl< td=""><td>0.059</td><td><dl< td=""><td>0.080</td><td><dl< td=""><td>0.21</td></dl<></td></dl<></td></dl<> | 0.059     | <dl< td=""><td>0.080</td><td><dl< td=""><td>0.21</td></dl<></td></dl<> | 0.080 | <dl< td=""><td>0.21</td></dl<> | 0.21 |
|                      |             |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                        |        |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                              | issolved N | letals       |              |        |          |                                                                                                                |           |                                                                        |       |                                |      |
|                      | Aluminium   | Antim ony                                                                                                                                                                                                                                                                                                                                                                                  | Arsenic                                                                                                                                                                                                                                                                                                                                                          | Beryllium                                                                                                                                                                                                                                                                                                                              | Barium | Cadmium                                                                                                                                                                                                                                                                                        | Chromiu<br>m                                                                                                                                                                                                                                                         | Cobalt  | Copper                                                                                                                                                                                                                                   | Lead                                                                                                                                                                                                           | Lithium    | Manganese    | Molybdenum   | Nickel | Rubidium | Selenium                                                                                                       | Strontium | Uranium                                                                | Zinc  | Boron                          | Iron |
|                      | mg/L        | mg/L                                                                                                                                                                                                                                                                                                                                                                                       | mg/L                                                                                                                                                                                                                                                                                                                                                             | mg/L                                                                                                                                                                                                                                                                                                                                   | mg/L   | mg/L                                                                                                                                                                                                                                                                                           | mg/L                                                                                                                                                                                                                                                                 | mg/L    | mg/L                                                                                                                                                                                                                                     | mg/L                                                                                                                                                                                                           | mg/L       | mg/L         | mg/L         | mg/L   | mg/L     | mg/L                                                                                                           | mg/L      | mg/L                                                                   | mg/L  | mg/L                           | mg/L |
| Detection limit (DL) | 0.01        | 0.001                                                                                                                                                                                                                                                                                                                                                                                      | 0.001                                                                                                                                                                                                                                                                                                                                                            | 0.001                                                                                                                                                                                                                                                                                                                                  | 0.001  | 0.0001                                                                                                                                                                                                                                                                                         | 0.001                                                                                                                                                                                                                                                                | 0.001   | 0.001                                                                                                                                                                                                                                    | 0.001                                                                                                                                                                                                          | 0.001      | 0.001        | 0.001        | 0.001  | 0.001    | 0.01                                                                                                           | 0.001     | 0.001                                                                  | 0.005 | 0.05                           | 0.05 |
| Sample size (n)      | 15          | 15                                                                                                                                                                                                                                                                                                                                                                                         | 15                                                                                                                                                                                                                                                                                                                                                               | 15                                                                                                                                                                                                                                                                                                                                     | 15     | 15                                                                                                                                                                                                                                                                                             | 15                                                                                                                                                                                                                                                                   | 15      | 15                                                                                                                                                                                                                                       | 15                                                                                                                                                                                                             | 15         | 15           | 15           | 15     | 15       | 15                                                                                                             | 15        | 15                                                                     | 15    | 15                             | 15   |
| n > DL               | 5           | 0                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                      | 15     | 0                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                    | 15      | 1                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                              | 15         | 15           | 1            | 15     | 14       | 0                                                                                                              | 15        | 0                                                                      | 15    | 0                              | 2    |
| Min                  | 0.01        | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.011</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td>-</td><td><dl< td=""><td>0.006</td><td>0.025</td><td>-</td><td>0.013</td><td>0.001</td><td><dl< td=""><td>0.019</td><td><dl< td=""><td>0.014</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>         | <dl< td=""><td><dl< td=""><td>0.011</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td>-</td><td><dl< td=""><td>0.006</td><td>0.025</td><td>-</td><td>0.013</td><td>0.001</td><td><dl< td=""><td>0.019</td><td><dl< td=""><td>0.014</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>         | <dl< td=""><td>0.011</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td>-</td><td><dl< td=""><td>0.006</td><td>0.025</td><td>-</td><td>0.013</td><td>0.001</td><td><dl< td=""><td>0.019</td><td><dl< td=""><td>0.014</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>         | 0.011  | <dl< td=""><td><dl< td=""><td>0.001</td><td>-</td><td><dl< td=""><td>0.006</td><td>0.025</td><td>-</td><td>0.013</td><td>0.001</td><td><dl< td=""><td>0.019</td><td><dl< td=""><td>0.014</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>         | <dl< td=""><td>0.001</td><td>-</td><td><dl< td=""><td>0.006</td><td>0.025</td><td>-</td><td>0.013</td><td>0.001</td><td><dl< td=""><td>0.019</td><td><dl< td=""><td>0.014</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>         | 0.001   | -                                                                                                                                                                                                                                        | <dl< td=""><td>0.006</td><td>0.025</td><td>-</td><td>0.013</td><td>0.001</td><td><dl< td=""><td>0.019</td><td><dl< td=""><td>0.014</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<>     | 0.006      | 0.025        | -            | 0.013  | 0.001    | <dl< td=""><td>0.019</td><td><dl< td=""><td>0.014</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<> | 0.019     | <dl< td=""><td>0.014</td><td><dl< td=""><td>0.06</td></dl<></td></dl<> | 0.014 | <dl< td=""><td>0.06</td></dl<> | 0.06 |
| Median               | 0.005       | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.018</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td>-</td><td><dl< td=""><td>0.013</td><td>0.046</td><td>-</td><td>0.021</td><td>0.012</td><td><dl< td=""><td>0.050</td><td><dl< td=""><td>0.030</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>            | <dl< td=""><td><dl< td=""><td>0.018</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td>-</td><td><dl< td=""><td>0.013</td><td>0.046</td><td>-</td><td>0.021</td><td>0.012</td><td><dl< td=""><td>0.050</td><td><dl< td=""><td>0.030</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>            | <dl< td=""><td>0.018</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td>-</td><td><dl< td=""><td>0.013</td><td>0.046</td><td>-</td><td>0.021</td><td>0.012</td><td><dl< td=""><td>0.050</td><td><dl< td=""><td>0.030</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>            | 0.018  | <dl< td=""><td><dl< td=""><td>0.002</td><td>-</td><td><dl< td=""><td>0.013</td><td>0.046</td><td>-</td><td>0.021</td><td>0.012</td><td><dl< td=""><td>0.050</td><td><dl< td=""><td>0.030</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>            | <dl< td=""><td>0.002</td><td>-</td><td><dl< td=""><td>0.013</td><td>0.046</td><td>-</td><td>0.021</td><td>0.012</td><td><dl< td=""><td>0.050</td><td><dl< td=""><td>0.030</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>            | 0.002   | -                                                                                                                                                                                                                                        | <dl< td=""><td>0.013</td><td>0.046</td><td>-</td><td>0.021</td><td>0.012</td><td><dl< td=""><td>0.050</td><td><dl< td=""><td>0.030</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>        | 0.013      | 0.046        | -            | 0.021  | 0.012    | <dl< td=""><td>0.050</td><td><dl< td=""><td>0.030</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>    | 0.050     | <dl< td=""><td>0.030</td><td><dl< td=""><td>-</td></dl<></td></dl<>    | 0.030 | <dl< td=""><td>-</td></dl<>    | -    |
| Mean                 | 0.011333333 | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.017</td><td><dl< td=""><td><dl< td=""><td>0.003</td><td>-</td><td><dl< td=""><td>0.013</td><td>0.054</td><td>-</td><td>0.022</td><td>0.010</td><td><dl< td=""><td>0.044</td><td><dl< td=""><td>0.029</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>            | <dl< td=""><td><dl< td=""><td>0.017</td><td><dl< td=""><td><dl< td=""><td>0.003</td><td>-</td><td><dl< td=""><td>0.013</td><td>0.054</td><td>-</td><td>0.022</td><td>0.010</td><td><dl< td=""><td>0.044</td><td><dl< td=""><td>0.029</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>            | <dl< td=""><td>0.017</td><td><dl< td=""><td><dl< td=""><td>0.003</td><td>-</td><td><dl< td=""><td>0.013</td><td>0.054</td><td>-</td><td>0.022</td><td>0.010</td><td><dl< td=""><td>0.044</td><td><dl< td=""><td>0.029</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>            | 0.017  | <dl< td=""><td><dl< td=""><td>0.003</td><td>-</td><td><dl< td=""><td>0.013</td><td>0.054</td><td>-</td><td>0.022</td><td>0.010</td><td><dl< td=""><td>0.044</td><td><dl< td=""><td>0.029</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>            | <dl< td=""><td>0.003</td><td>-</td><td><dl< td=""><td>0.013</td><td>0.054</td><td>-</td><td>0.022</td><td>0.010</td><td><dl< td=""><td>0.044</td><td><dl< td=""><td>0.029</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>            | 0.003   | -                                                                                                                                                                                                                                        | <dl< td=""><td>0.013</td><td>0.054</td><td>-</td><td>0.022</td><td>0.010</td><td><dl< td=""><td>0.044</td><td><dl< td=""><td>0.029</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>        | 0.013      | 0.054        | -            | 0.022  | 0.010    | <dl< td=""><td>0.044</td><td><dl< td=""><td>0.029</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>    | 0.044     | <dl< td=""><td>0.029</td><td><dl< td=""><td>-</td></dl<></td></dl<>    | 0.029 | <dl< td=""><td>-</td></dl<>    | -    |
| SD                   | 0.016740313 | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td>-</td><td><dl< td=""><td>0.003</td><td>0.042</td><td>-</td><td>0.008</td><td>0.004</td><td><dl< td=""><td>0.013</td><td><dl< td=""><td>0.008</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>            | <dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td>-</td><td><dl< td=""><td>0.003</td><td>0.042</td><td>-</td><td>0.008</td><td>0.004</td><td><dl< td=""><td>0.013</td><td><dl< td=""><td>0.008</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>            | <dl< td=""><td>0.003</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td>-</td><td><dl< td=""><td>0.003</td><td>0.042</td><td>-</td><td>0.008</td><td>0.004</td><td><dl< td=""><td>0.013</td><td><dl< td=""><td>0.008</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>            | 0.003  | <dl< td=""><td><dl< td=""><td>0.002</td><td>-</td><td><dl< td=""><td>0.003</td><td>0.042</td><td>-</td><td>0.008</td><td>0.004</td><td><dl< td=""><td>0.013</td><td><dl< td=""><td>0.008</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>            | <dl< td=""><td>0.002</td><td>-</td><td><dl< td=""><td>0.003</td><td>0.042</td><td>-</td><td>0.008</td><td>0.004</td><td><dl< td=""><td>0.013</td><td><dl< td=""><td>0.008</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>            | 0.002   | -                                                                                                                                                                                                                                        | <dl< td=""><td>0.003</td><td>0.042</td><td>-</td><td>0.008</td><td>0.004</td><td><dl< td=""><td>0.013</td><td><dl< td=""><td>0.008</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>        | 0.003      | 0.042        | -            | 0.008  | 0.004    | <dl< td=""><td>0.013</td><td><dl< td=""><td>0.008</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>    | 0.013     | <dl< td=""><td>0.008</td><td><dl< td=""><td>-</td></dl<></td></dl<>    | 0.008 | <dl< td=""><td>-</td></dl<>    | -    |
| 80th percentile      | 0.01        | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.019</td><td><dl< td=""><td><dl< td=""><td>0.003</td><td>-</td><td><dl< td=""><td>0.016</td><td>0.053</td><td>-</td><td>0.029</td><td>0.013</td><td><dl< td=""><td>0.054</td><td><dl< td=""><td>0.032</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>            | <dl< td=""><td><dl< td=""><td>0.019</td><td><dl< td=""><td><dl< td=""><td>0.003</td><td>-</td><td><dl< td=""><td>0.016</td><td>0.053</td><td>-</td><td>0.029</td><td>0.013</td><td><dl< td=""><td>0.054</td><td><dl< td=""><td>0.032</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>            | <dl< td=""><td>0.019</td><td><dl< td=""><td><dl< td=""><td>0.003</td><td>-</td><td><dl< td=""><td>0.016</td><td>0.053</td><td>-</td><td>0.029</td><td>0.013</td><td><dl< td=""><td>0.054</td><td><dl< td=""><td>0.032</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>            | 0.019  | <dl< td=""><td><dl< td=""><td>0.003</td><td>-</td><td><dl< td=""><td>0.016</td><td>0.053</td><td>-</td><td>0.029</td><td>0.013</td><td><dl< td=""><td>0.054</td><td><dl< td=""><td>0.032</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>            | <dl< td=""><td>0.003</td><td>-</td><td><dl< td=""><td>0.016</td><td>0.053</td><td>-</td><td>0.029</td><td>0.013</td><td><dl< td=""><td>0.054</td><td><dl< td=""><td>0.032</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>            | 0.003   | -                                                                                                                                                                                                                                        | <dl< td=""><td>0.016</td><td>0.053</td><td>-</td><td>0.029</td><td>0.013</td><td><dl< td=""><td>0.054</td><td><dl< td=""><td>0.032</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>        | 0.016      | 0.053        | -            | 0.029  | 0.013    | <dl< td=""><td>0.054</td><td><dl< td=""><td>0.032</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>    | 0.054     | <dl< td=""><td>0.032</td><td><dl< td=""><td>-</td></dl<></td></dl<>    | 0.032 | <dl< td=""><td>-</td></dl<>    | -    |
| Max                  | 0.07        | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.022</td><td><dl< td=""><td><dl< td=""><td>0.008</td><td>0.001</td><td><dl< td=""><td>0.017</td><td>0.192</td><td>0.004</td><td>0.041</td><td>0.015</td><td><dl< td=""><td>0.059</td><td><dl< td=""><td>0.044</td><td><dl< td=""><td>0.07</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td>0.022</td><td><dl< td=""><td><dl< td=""><td>0.008</td><td>0.001</td><td><dl< td=""><td>0.017</td><td>0.192</td><td>0.004</td><td>0.041</td><td>0.015</td><td><dl< td=""><td>0.059</td><td><dl< td=""><td>0.044</td><td><dl< td=""><td>0.07</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.022</td><td><dl< td=""><td><dl< td=""><td>0.008</td><td>0.001</td><td><dl< td=""><td>0.017</td><td>0.192</td><td>0.004</td><td>0.041</td><td>0.015</td><td><dl< td=""><td>0.059</td><td><dl< td=""><td>0.044</td><td><dl< td=""><td>0.07</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.022  | <dl< td=""><td><dl< td=""><td>0.008</td><td>0.001</td><td><dl< td=""><td>0.017</td><td>0.192</td><td>0.004</td><td>0.041</td><td>0.015</td><td><dl< td=""><td>0.059</td><td><dl< td=""><td>0.044</td><td><dl< td=""><td>0.07</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.008</td><td>0.001</td><td><dl< td=""><td>0.017</td><td>0.192</td><td>0.004</td><td>0.041</td><td>0.015</td><td><dl< td=""><td>0.059</td><td><dl< td=""><td>0.044</td><td><dl< td=""><td>0.07</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.008   | 0.001                                                                                                                                                                                                                                    | <dl< td=""><td>0.017</td><td>0.192</td><td>0.004</td><td>0.041</td><td>0.015</td><td><dl< td=""><td>0.059</td><td><dl< td=""><td>0.044</td><td><dl< td=""><td>0.07</td></dl<></td></dl<></td></dl<></td></dl<> | 0.017      | 0.192        | 0.004        | 0.041  | 0.015    | <dl< td=""><td>0.059</td><td><dl< td=""><td>0.044</td><td><dl< td=""><td>0.07</td></dl<></td></dl<></td></dl<> | 0.059     | <dl< td=""><td>0.044</td><td><dl< td=""><td>0.07</td></dl<></td></dl<> | 0.044 | <dl< td=""><td>0.07</td></dl<> | 0.07 |

|                      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                             |        |                                                                                                                                                                                                                                                                                                                                     | Table 19                                                                                                                                                                                                                                                                                                  | DS3 Met | al and Me                                                                                                                                                                                                                                                         | talloid V                                                                                                                                                                                                                               | Vater Qua   | lity Summary | / Statistics                                                                                                                                                                      |        |          |                                                                                                                             |           |                                                                                     |       |                                             |                   |
|----------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|-----------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------|-------|---------------------------------------------|-------------------|
|                      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                             |        |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                           |         |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                         | Total Met   | als          |                                                                                                                                                                                   |        |          |                                                                                                                             |           |                                                                                     |       |                                             | -                 |
|                      | Aluminium | Antimony                                                                                                                                                                                                                                                                                                                                                                                                                        | Arsenic                                                                                                                                                                                                                                                                                                                                                                                               | Beryllium                                                                                                                                                                                                                                                                                                                                                                   | Barium | Cadmium                                                                                                                                                                                                                                                                                                                             | Chromium                                                                                                                                                                                                                                                                                                  | Cobalt  | Copper                                                                                                                                                                                                                                                            | Lead                                                                                                                                                                                                                                    | Lithium     | Manganese    | Molybdenum                                                                                                                                                                        | Nickel | Rubidium | Selenium                                                                                                                    | Strontium | Uranium                                                                             | Zinc  | Boron                                       | Iron              |
|                      | mg/L      | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/L                                                                                                                                                                                                                                                                                                                                                                                                  | mg/L                                                                                                                                                                                                                                                                                                                                                                        | mg/L   | mg/L                                                                                                                                                                                                                                                                                                                                | mg/L                                                                                                                                                                                                                                                                                                      | mg/L    | mg/L                                                                                                                                                                                                                                                              | mg/L                                                                                                                                                                                                                                    | mg/L        | mg/L         | mg/L                                                                                                                                                                              | mg/L   | mg/L     | mg/L                                                                                                                        | mg/L      | mg/L                                                                                | mg/L  | mg/L                                        | mg/L              |
| Detection limit (DL) | 0.01      | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.001                                                                                                                                                                                                                                                                                                                                                                                                 | 0.001                                                                                                                                                                                                                                                                                                                                                                       | 0.001  | 0.0001                                                                                                                                                                                                                                                                                                                              | 0.001                                                                                                                                                                                                                                                                                                     | 0.001   | 0.001                                                                                                                                                                                                                                                             | 0.001                                                                                                                                                                                                                                   | 0.001       | 0.001        | 0.001                                                                                                                                                                             | 0.001  | 0.001    | 0.01                                                                                                                        | 0.001     | 0.001                                                                               | 0.005 | 0.05                                        | 0.05              |
| Sample size (n)      | 16        | 16                                                                                                                                                                                                                                                                                                                                                                                                                              | 16                                                                                                                                                                                                                                                                                                                                                                                                    | 16                                                                                                                                                                                                                                                                                                                                                                          | 16     | 16                                                                                                                                                                                                                                                                                                                                  | 16                                                                                                                                                                                                                                                                                                        | 16      | 16                                                                                                                                                                                                                                                                | 16                                                                                                                                                                                                                                      | 16          | 16           | 16                                                                                                                                                                                | 16     | 16       | 16                                                                                                                          | 16        | 16                                                                                  | 16    | 16                                          | 16                |
| n > DL               | 11        | 0                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                           | 16     | 2                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                         | 11      | 1                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                       | 16          | 16           | 0                                                                                                                                                                                 | 16     | 16       | 0                                                                                                                           | 16        | 0                                                                                   | 16    | 0                                           | 2                 |
| Min                  | 0.01      | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.012</td><td>0.0001</td><td>0.001</td><td>0.001</td><td>-</td><td><dl< td=""><td>0.007</td><td>0.018</td><td><dl< td=""><td>0.013</td><td>0.004</td><td><dl< td=""><td>0.018</td><td><dl< td=""><td>0.012</td><td><dl< td=""><td>0.08</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                     | <dl< td=""><td><dl< td=""><td>0.012</td><td>0.0001</td><td>0.001</td><td>0.001</td><td>-</td><td><dl< td=""><td>0.007</td><td>0.018</td><td><dl< td=""><td>0.013</td><td>0.004</td><td><dl< td=""><td>0.018</td><td><dl< td=""><td>0.012</td><td><dl< td=""><td>0.08</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                     | <dl< td=""><td>0.012</td><td>0.0001</td><td>0.001</td><td>0.001</td><td>-</td><td><dl< td=""><td>0.007</td><td>0.018</td><td><dl< td=""><td>0.013</td><td>0.004</td><td><dl< td=""><td>0.018</td><td><dl< td=""><td>0.012</td><td><dl< td=""><td>0.08</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                     | 0.012  | 0.0001                                                                                                                                                                                                                                                                                                                              | 0.001                                                                                                                                                                                                                                                                                                     | 0.001   | -                                                                                                                                                                                                                                                                 | <dl< td=""><td>0.007</td><td>0.018</td><td><dl< td=""><td>0.013</td><td>0.004</td><td><dl< td=""><td>0.018</td><td><dl< td=""><td>0.012</td><td><dl< td=""><td>0.08</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>              | 0.007       | 0.018        | <dl< td=""><td>0.013</td><td>0.004</td><td><dl< td=""><td>0.018</td><td><dl< td=""><td>0.012</td><td><dl< td=""><td>0.08</td></dl<></td></dl<></td></dl<></td></dl<>              | 0.013  | 0.004    | <dl< td=""><td>0.018</td><td><dl< td=""><td>0.012</td><td><dl< td=""><td>0.08</td></dl<></td></dl<></td></dl<>              | 0.018     | <dl< td=""><td>0.012</td><td><dl< td=""><td>0.08</td></dl<></td></dl<>              | 0.012 | <dl< td=""><td>0.08</td></dl<>              | 0.08              |
| Median               | 0.01      | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.018</td><td>-</td><td>-</td><td>0.002</td><td>-</td><td><dl< td=""><td>0.015</td><td>0.028</td><td><dl< td=""><td>0.022</td><td>0.012</td><td><dl< td=""><td>0.050</td><td><dl< td=""><td>0.029</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                 | <dl< td=""><td><dl< td=""><td>0.018</td><td>-</td><td>-</td><td>0.002</td><td>-</td><td><dl< td=""><td>0.015</td><td>0.028</td><td><dl< td=""><td>0.022</td><td>0.012</td><td><dl< td=""><td>0.050</td><td><dl< td=""><td>0.029</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                 | <dl< td=""><td>0.018</td><td>-</td><td>-</td><td>0.002</td><td>-</td><td><dl< td=""><td>0.015</td><td>0.028</td><td><dl< td=""><td>0.022</td><td>0.012</td><td><dl< td=""><td>0.050</td><td><dl< td=""><td>0.029</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                 | 0.018  | -                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                         | 0.002   | -                                                                                                                                                                                                                                                                 | <dl< td=""><td>0.015</td><td>0.028</td><td><dl< td=""><td>0.022</td><td>0.012</td><td><dl< td=""><td>0.050</td><td><dl< td=""><td>0.029</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                 | 0.015       | 0.028        | <dl< td=""><td>0.022</td><td>0.012</td><td><dl< td=""><td>0.050</td><td><dl< td=""><td>0.029</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>                 | 0.022  | 0.012    | <dl< td=""><td>0.050</td><td><dl< td=""><td>0.029</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>                 | 0.050     | <dl< td=""><td>0.029</td><td><dl< td=""><td>-</td></dl<></td></dl<>                 | 0.029 | <dl< td=""><td>-</td></dl<>                 | -                 |
| Mean                 | 0.03      | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.018</td><td>-</td><td>-</td><td>0.002</td><td>-</td><td><dl< td=""><td>0.014</td><td>0.039</td><td><dl< td=""><td>0.023</td><td>0.011</td><td><dl< td=""><td>0.045</td><td><dl< td=""><td>0.034</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                 | <dl< td=""><td><dl< td=""><td>0.018</td><td>-</td><td>-</td><td>0.002</td><td>-</td><td><dl< td=""><td>0.014</td><td>0.039</td><td><dl< td=""><td>0.023</td><td>0.011</td><td><dl< td=""><td>0.045</td><td><dl< td=""><td>0.034</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                 | <dl< td=""><td>0.018</td><td>-</td><td>-</td><td>0.002</td><td>-</td><td><dl< td=""><td>0.014</td><td>0.039</td><td><dl< td=""><td>0.023</td><td>0.011</td><td><dl< td=""><td>0.045</td><td><dl< td=""><td>0.034</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                 | 0.018  | -                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                         | 0.002   | -                                                                                                                                                                                                                                                                 | <dl< td=""><td>0.014</td><td>0.039</td><td><dl< td=""><td>0.023</td><td>0.011</td><td><dl< td=""><td>0.045</td><td><dl< td=""><td>0.034</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                 | 0.014       | 0.039        | <dl< td=""><td>0.023</td><td>0.011</td><td><dl< td=""><td>0.045</td><td><dl< td=""><td>0.034</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>                 | 0.023  | 0.011    | <dl< td=""><td>0.045</td><td><dl< td=""><td>0.034</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>                 | 0.045     | <dl< td=""><td>0.034</td><td><dl< td=""><td>-</td></dl<></td></dl<>                 | 0.034 | <dl< td=""><td>-</td></dl<>                 | -                 |
| SD                   | 0.05      | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.002</td><td>-</td><td>-</td><td>0.002</td><td>-</td><td><dl< td=""><td>0.003</td><td>0.028</td><td><dl< td=""><td>0.008</td><td>0.003</td><td><dl< td=""><td>0.010</td><td><dl< td=""><td>0.028</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                 | <dl< td=""><td><dl< td=""><td>0.002</td><td>-</td><td>-</td><td>0.002</td><td>-</td><td><dl< td=""><td>0.003</td><td>0.028</td><td><dl< td=""><td>0.008</td><td>0.003</td><td><dl< td=""><td>0.010</td><td><dl< td=""><td>0.028</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                 | <dl< td=""><td>0.002</td><td>-</td><td>-</td><td>0.002</td><td>-</td><td><dl< td=""><td>0.003</td><td>0.028</td><td><dl< td=""><td>0.008</td><td>0.003</td><td><dl< td=""><td>0.010</td><td><dl< td=""><td>0.028</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                 | 0.002  | -                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                         | 0.002   | -                                                                                                                                                                                                                                                                 | <dl< td=""><td>0.003</td><td>0.028</td><td><dl< td=""><td>0.008</td><td>0.003</td><td><dl< td=""><td>0.010</td><td><dl< td=""><td>0.028</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                 | 0.003       | 0.028        | <dl< td=""><td>0.008</td><td>0.003</td><td><dl< td=""><td>0.010</td><td><dl< td=""><td>0.028</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>                 | 0.008  | 0.003    | <dl< td=""><td>0.010</td><td><dl< td=""><td>0.028</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>                 | 0.010     | <dl< td=""><td>0.028</td><td><dl< td=""><td>-</td></dl<></td></dl<>                 | 0.028 | <dl< td=""><td>-</td></dl<>                 | -                 |
| 80th percentile      | 0.02      | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.019</td><td>-</td><td>-</td><td>0.003</td><td>-</td><td><dl< td=""><td>0.015</td><td>0.046</td><td><dl< td=""><td>0.028</td><td>0.013</td><td><dl< td=""><td>0.051</td><td><dl< td=""><td>0.033</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                 | <dl< td=""><td><dl< td=""><td>0.019</td><td>-</td><td>-</td><td>0.003</td><td>-</td><td><dl< td=""><td>0.015</td><td>0.046</td><td><dl< td=""><td>0.028</td><td>0.013</td><td><dl< td=""><td>0.051</td><td><dl< td=""><td>0.033</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                 | <dl< td=""><td>0.019</td><td>-</td><td>-</td><td>0.003</td><td>-</td><td><dl< td=""><td>0.015</td><td>0.046</td><td><dl< td=""><td>0.028</td><td>0.013</td><td><dl< td=""><td>0.051</td><td><dl< td=""><td>0.033</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                 | 0.019  | -                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                         | 0.003   | -                                                                                                                                                                                                                                                                 | <dl< td=""><td>0.015</td><td>0.046</td><td><dl< td=""><td>0.028</td><td>0.013</td><td><dl< td=""><td>0.051</td><td><dl< td=""><td>0.033</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                 | 0.015       | 0.046        | <dl< td=""><td>0.028</td><td>0.013</td><td><dl< td=""><td>0.051</td><td><dl< td=""><td>0.033</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>                 | 0.028  | 0.013    | <dl< td=""><td>0.051</td><td><dl< td=""><td>0.033</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>                 | 0.051     | <dl< td=""><td>0.033</td><td><dl< td=""><td>-</td></dl<></td></dl<>                 | 0.033 | <dl< td=""><td>-</td></dl<>                 | -                 |
| Max                  | 0.19      | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.021</td><td>0.0003</td><td>0.001</td><td>0.006</td><td>0.003</td><td><dl< td=""><td>0.017</td><td>0.119</td><td><dl< td=""><td>0.039</td><td>0.014</td><td><dl< td=""><td>0.054</td><td><dl< td=""><td>0.134</td><td><dl< td=""><td>0.20</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                 | <dl< td=""><td><dl< td=""><td>0.021</td><td>0.0003</td><td>0.001</td><td>0.006</td><td>0.003</td><td><dl< td=""><td>0.017</td><td>0.119</td><td><dl< td=""><td>0.039</td><td>0.014</td><td><dl< td=""><td>0.054</td><td><dl< td=""><td>0.134</td><td><dl< td=""><td>0.20</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                 | <dl< td=""><td>0.021</td><td>0.0003</td><td>0.001</td><td>0.006</td><td>0.003</td><td><dl< td=""><td>0.017</td><td>0.119</td><td><dl< td=""><td>0.039</td><td>0.014</td><td><dl< td=""><td>0.054</td><td><dl< td=""><td>0.134</td><td><dl< td=""><td>0.20</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                 | 0.021  | 0.0003                                                                                                                                                                                                                                                                                                                              | 0.001                                                                                                                                                                                                                                                                                                     | 0.006   | 0.003                                                                                                                                                                                                                                                             | <dl< td=""><td>0.017</td><td>0.119</td><td><dl< td=""><td>0.039</td><td>0.014</td><td><dl< td=""><td>0.054</td><td><dl< td=""><td>0.134</td><td><dl< td=""><td>0.20</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>              | 0.017       | 0.119        | <dl< td=""><td>0.039</td><td>0.014</td><td><dl< td=""><td>0.054</td><td><dl< td=""><td>0.134</td><td><dl< td=""><td>0.20</td></dl<></td></dl<></td></dl<></td></dl<>              | 0.039  | 0.014    | <dl< td=""><td>0.054</td><td><dl< td=""><td>0.134</td><td><dl< td=""><td>0.20</td></dl<></td></dl<></td></dl<>              | 0.054     | <dl< td=""><td>0.134</td><td><dl< td=""><td>0.20</td></dl<></td></dl<>              | 0.134 | <dl< td=""><td>0.20</td></dl<>              | 0.20              |
|                      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                             |        |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                           |         |                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                       | Dissolved N | letals       |                                                                                                                                                                                   |        |          |                                                                                                                             |           |                                                                                     |       |                                             |                   |
|                      | Aluminium | Antimony                                                                                                                                                                                                                                                                                                                                                                                                                        | Arsenic                                                                                                                                                                                                                                                                                                                                                                                               | Beryllium                                                                                                                                                                                                                                                                                                                                                                   | Barium | Cadmium                                                                                                                                                                                                                                                                                                                             | Chromium                                                                                                                                                                                                                                                                                                  | Cobalt  | Copper                                                                                                                                                                                                                                                            | Lead                                                                                                                                                                                                                                    | Lithium     | Manganese    | Molybdenum                                                                                                                                                                        | Nickel | Rubidium | Selenium                                                                                                                    | Strontium | Uranium                                                                             | Zinc  | Boron                                       | Iron              |
|                      | mg/L      | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/L                                                                                                                                                                                                                                                                                                                                                                                                  | mg/L                                                                                                                                                                                                                                                                                                                                                                        | mg/L   | mg/L                                                                                                                                                                                                                                                                                                                                | mg/L                                                                                                                                                                                                                                                                                                      | mg/L    | mg/L                                                                                                                                                                                                                                                              | mg/L                                                                                                                                                                                                                                    | mg/L        | mg/L         | mg/L                                                                                                                                                                              | mg/L   | mg/L     | mg/L                                                                                                                        | mg/L      | mg/L                                                                                | mg/L  | mg/L                                        | mg/L              |
| Detection limit (DL) | 0.01      | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.001                                                                                                                                                                                                                                                                                                                                                                                                 | 0.001                                                                                                                                                                                                                                                                                                                                                                       | 0.001  | 0.0001                                                                                                                                                                                                                                                                                                                              | 0.001                                                                                                                                                                                                                                                                                                     | 0.001   | 0.001                                                                                                                                                                                                                                                             | 0.001                                                                                                                                                                                                                                   | 0.001       | 0.001        | 0.001                                                                                                                                                                             | 0.001  | 0.001    | 0.01                                                                                                                        | 0.001     | 0.001                                                                               | 0.005 | 0.05                                        | 0.05              |
| Sample size (n)      | 15        | 15                                                                                                                                                                                                                                                                                                                                                                                                                              | 15                                                                                                                                                                                                                                                                                                                                                                                                    | 15                                                                                                                                                                                                                                                                                                                                                                          | 15     | 15                                                                                                                                                                                                                                                                                                                                  | 15                                                                                                                                                                                                                                                                                                        | 15      | 15                                                                                                                                                                                                                                                                | 15                                                                                                                                                                                                                                      | 15          | 15           | 15                                                                                                                                                                                | 15     | 15       | 15                                                                                                                          | 15        | 15                                                                                  | 15    | 15                                          | 15                |
| n > DL               | 2         | 0                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                           | 15     | 0                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                         | 8       | 0                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                       | 15          | 15           | 0                                                                                                                                                                                 | 15     | 14       | 0                                                                                                                           | 15        | 0                                                                                   | 15    | 0                                           | 0                 |
| Min                  | 0.03      | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.011</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>0.006</td><td>0.017</td><td><dl< td=""><td>0.012</td><td>0.001</td><td><dl< td=""><td>0.018</td><td><dl< td=""><td>0.012</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td>0.011</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>0.006</td><td>0.017</td><td><dl< td=""><td>0.012</td><td>0.001</td><td><dl< td=""><td>0.018</td><td><dl< td=""><td>0.012</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.011</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>0.006</td><td>0.017</td><td><dl< td=""><td>0.012</td><td>0.001</td><td><dl< td=""><td>0.018</td><td><dl< td=""><td>0.012</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.011  | <dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>0.006</td><td>0.017</td><td><dl< td=""><td>0.012</td><td>0.001</td><td><dl< td=""><td>0.018</td><td><dl< td=""><td>0.012</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>0.006</td><td>0.017</td><td><dl< td=""><td>0.012</td><td>0.001</td><td><dl< td=""><td>0.018</td><td><dl< td=""><td>0.012</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.001   | <dl< td=""><td><dl< td=""><td>0.006</td><td>0.017</td><td><dl< td=""><td>0.012</td><td>0.001</td><td><dl< td=""><td>0.018</td><td><dl< td=""><td>0.012</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.006</td><td>0.017</td><td><dl< td=""><td>0.012</td><td>0.001</td><td><dl< td=""><td>0.018</td><td><dl< td=""><td>0.012</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.006       | 0.017        | <dl< td=""><td>0.012</td><td>0.001</td><td><dl< td=""><td>0.018</td><td><dl< td=""><td>0.012</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.012  | 0.001    | <dl< td=""><td>0.018</td><td><dl< td=""><td>0.012</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | 0.018     | <dl< td=""><td>0.012</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | 0.012 | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |
| Median               | -         | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.017</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>0.013</td><td>0.027</td><td><dl< td=""><td>0.018</td><td>0.011</td><td><dl< td=""><td>0.045</td><td><dl< td=""><td>0.025</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td>0.017</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>0.013</td><td>0.027</td><td><dl< td=""><td>0.018</td><td>0.011</td><td><dl< td=""><td>0.045</td><td><dl< td=""><td>0.025</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.017</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>0.013</td><td>0.027</td><td><dl< td=""><td>0.018</td><td>0.011</td><td><dl< td=""><td>0.045</td><td><dl< td=""><td>0.025</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.017  | <dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>0.013</td><td>0.027</td><td><dl< td=""><td>0.018</td><td>0.011</td><td><dl< td=""><td>0.045</td><td><dl< td=""><td>0.025</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>0.013</td><td>0.027</td><td><dl< td=""><td>0.018</td><td>0.011</td><td><dl< td=""><td>0.045</td><td><dl< td=""><td>0.025</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.001   | <dl< td=""><td><dl< td=""><td>0.013</td><td>0.027</td><td><dl< td=""><td>0.018</td><td>0.011</td><td><dl< td=""><td>0.045</td><td><dl< td=""><td>0.025</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.013</td><td>0.027</td><td><dl< td=""><td>0.018</td><td>0.011</td><td><dl< td=""><td>0.045</td><td><dl< td=""><td>0.025</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.013       | 0.027        | <dl< td=""><td>0.018</td><td>0.011</td><td><dl< td=""><td>0.045</td><td><dl< td=""><td>0.025</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.018  | 0.011    | <dl< td=""><td>0.045</td><td><dl< td=""><td>0.025</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | 0.045     | <dl< td=""><td>0.025</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | 0.025 | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |
| Mean                 | -         | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.016</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.013</td><td>0.035</td><td><dl< td=""><td>0.020</td><td>0.010</td><td><dl< td=""><td>0.042</td><td><dl< td=""><td>0.024</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td>0.016</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.013</td><td>0.035</td><td><dl< td=""><td>0.020</td><td>0.010</td><td><dl< td=""><td>0.042</td><td><dl< td=""><td>0.024</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.016</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.013</td><td>0.035</td><td><dl< td=""><td>0.020</td><td>0.010</td><td><dl< td=""><td>0.042</td><td><dl< td=""><td>0.024</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.016  | <dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.013</td><td>0.035</td><td><dl< td=""><td>0.020</td><td>0.010</td><td><dl< td=""><td>0.042</td><td><dl< td=""><td>0.024</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.013</td><td>0.035</td><td><dl< td=""><td>0.020</td><td>0.010</td><td><dl< td=""><td>0.042</td><td><dl< td=""><td>0.024</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.002   | <dl< td=""><td><dl< td=""><td>0.013</td><td>0.035</td><td><dl< td=""><td>0.020</td><td>0.010</td><td><dl< td=""><td>0.042</td><td><dl< td=""><td>0.024</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.013</td><td>0.035</td><td><dl< td=""><td>0.020</td><td>0.010</td><td><dl< td=""><td>0.042</td><td><dl< td=""><td>0.024</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.013       | 0.035        | <dl< td=""><td>0.020</td><td>0.010</td><td><dl< td=""><td>0.042</td><td><dl< td=""><td>0.024</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.020  | 0.010    | <dl< td=""><td>0.042</td><td><dl< td=""><td>0.024</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | 0.042     | <dl< td=""><td>0.024</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | 0.024 | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |
| SD                   | -         | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td>0.029</td><td><dl< td=""><td>0.008</td><td>0.004</td><td><dl< td=""><td>0.011</td><td><dl< td=""><td>0.006</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td>0.029</td><td><dl< td=""><td>0.008</td><td>0.004</td><td><dl< td=""><td>0.011</td><td><dl< td=""><td>0.006</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.003</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td>0.029</td><td><dl< td=""><td>0.008</td><td>0.004</td><td><dl< td=""><td>0.011</td><td><dl< td=""><td>0.006</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.003  | <dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td>0.029</td><td><dl< td=""><td>0.008</td><td>0.004</td><td><dl< td=""><td>0.011</td><td><dl< td=""><td>0.006</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td>0.029</td><td><dl< td=""><td>0.008</td><td>0.004</td><td><dl< td=""><td>0.011</td><td><dl< td=""><td>0.006</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.001   | <dl< td=""><td><dl< td=""><td>0.002</td><td>0.029</td><td><dl< td=""><td>0.008</td><td>0.004</td><td><dl< td=""><td>0.011</td><td><dl< td=""><td>0.006</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.002</td><td>0.029</td><td><dl< td=""><td>0.008</td><td>0.004</td><td><dl< td=""><td>0.011</td><td><dl< td=""><td>0.006</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.002       | 0.029        | <dl< td=""><td>0.008</td><td>0.004</td><td><dl< td=""><td>0.011</td><td><dl< td=""><td>0.006</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.008  | 0.004    | <dl< td=""><td>0.011</td><td><dl< td=""><td>0.006</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | 0.011     | <dl< td=""><td>0.006</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | 0.006 | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |
| 80th percentile      | -         | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.019</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.014</td><td>0.036</td><td><dl< td=""><td>0.023</td><td>0.012</td><td><dl< td=""><td>0.049</td><td><dl< td=""><td>0.029</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td>0.019</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.014</td><td>0.036</td><td><dl< td=""><td>0.023</td><td>0.012</td><td><dl< td=""><td>0.049</td><td><dl< td=""><td>0.029</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.019</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.014</td><td>0.036</td><td><dl< td=""><td>0.023</td><td>0.012</td><td><dl< td=""><td>0.049</td><td><dl< td=""><td>0.029</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.019  | <dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.014</td><td>0.036</td><td><dl< td=""><td>0.023</td><td>0.012</td><td><dl< td=""><td>0.049</td><td><dl< td=""><td>0.029</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.014</td><td>0.036</td><td><dl< td=""><td>0.023</td><td>0.012</td><td><dl< td=""><td>0.049</td><td><dl< td=""><td>0.029</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.002   | <dl< td=""><td><dl< td=""><td>0.014</td><td>0.036</td><td><dl< td=""><td>0.023</td><td>0.012</td><td><dl< td=""><td>0.049</td><td><dl< td=""><td>0.029</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.014</td><td>0.036</td><td><dl< td=""><td>0.023</td><td>0.012</td><td><dl< td=""><td>0.049</td><td><dl< td=""><td>0.029</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.014       | 0.036        | <dl< td=""><td>0.023</td><td>0.012</td><td><dl< td=""><td>0.049</td><td><dl< td=""><td>0.029</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.023  | 0.012    | <dl< td=""><td>0.049</td><td><dl< td=""><td>0.029</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | 0.049     | <dl< td=""><td>0.029</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | 0.029 | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |
| Max                  | 0.07      | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.020</td><td><dl< td=""><td><dl< td=""><td>0.005</td><td><dl< td=""><td><dl< td=""><td>0.015</td><td>0.126</td><td><dl< td=""><td>0.039</td><td>0.013</td><td><dl< td=""><td>0.054</td><td><dl< td=""><td>0.033</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td>0.020</td><td><dl< td=""><td><dl< td=""><td>0.005</td><td><dl< td=""><td><dl< td=""><td>0.015</td><td>0.126</td><td><dl< td=""><td>0.039</td><td>0.013</td><td><dl< td=""><td>0.054</td><td><dl< td=""><td>0.033</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.020</td><td><dl< td=""><td><dl< td=""><td>0.005</td><td><dl< td=""><td><dl< td=""><td>0.015</td><td>0.126</td><td><dl< td=""><td>0.039</td><td>0.013</td><td><dl< td=""><td>0.054</td><td><dl< td=""><td>0.033</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.020  | <dl< td=""><td><dl< td=""><td>0.005</td><td><dl< td=""><td><dl< td=""><td>0.015</td><td>0.126</td><td><dl< td=""><td>0.039</td><td>0.013</td><td><dl< td=""><td>0.054</td><td><dl< td=""><td>0.033</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.005</td><td><dl< td=""><td><dl< td=""><td>0.015</td><td>0.126</td><td><dl< td=""><td>0.039</td><td>0.013</td><td><dl< td=""><td>0.054</td><td><dl< td=""><td>0.033</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.005   | <dl< td=""><td><dl< td=""><td>0.015</td><td>0.126</td><td><dl< td=""><td>0.039</td><td>0.013</td><td><dl< td=""><td>0.054</td><td><dl< td=""><td>0.033</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.015</td><td>0.126</td><td><dl< td=""><td>0.039</td><td>0.013</td><td><dl< td=""><td>0.054</td><td><dl< td=""><td>0.033</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.015       | 0.126        | <dl< td=""><td>0.039</td><td>0.013</td><td><dl< td=""><td>0.054</td><td><dl< td=""><td>0.033</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.039  | 0.013    | <dl< td=""><td>0.054</td><td><dl< td=""><td>0.033</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | 0.054     | <dl< td=""><td>0.033</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | 0.033 | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |

|                      |           |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                        | Table 20                                                                                                                                                                                                                                                                                     | DS4 Met | al and Me                                                                                                                                                                                                                                            | talloid V                                                                                                                                                                                                                  | /ater Qua  | lity Summary | / Statistics                                                                                                                                                         |        |          |                                                                                                                |           |                                                                        |       |                                |      |
|----------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|----------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------|-------|--------------------------------|------|
|                      |           |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                              |         |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                            | Total Met  | als          |                                                                                                                                                                      |        |          |                                                                                                                |           |                                                                        |       |                                |      |
|                      | Aluminium | Antimony                                                                                                                                                                                                                                                                                                                                                                                                           | Arsenic                                                                                                                                                                                                                                                                                                                                                                                  | Beryllium                                                                                                                                                                                                                                                                                                                                                      | Barium | Cadmium                                                                                                                                                                                                                                                                                                                | Chromium                                                                                                                                                                                                                                                                                     | Cobalt  | Copper                                                                                                                                                                                                                                               | Lead                                                                                                                                                                                                                       | Lithium    | Manganese    | Molybdenum                                                                                                                                                           | Nickel | Rubidium | Selenium                                                                                                       | Strontium | Uranium                                                                | Zinc  | Boron                          | Iron |
|                      | mg/L      | mg/L                                                                                                                                                                                                                                                                                                                                                                                                               | mg/L                                                                                                                                                                                                                                                                                                                                                                                     | mg/L                                                                                                                                                                                                                                                                                                                                                           | mg/L   | mg/L                                                                                                                                                                                                                                                                                                                   | mg/L                                                                                                                                                                                                                                                                                         | mg/L    | mg/L                                                                                                                                                                                                                                                 | mg/L                                                                                                                                                                                                                       | mg/L       | mg/L         | mg/L                                                                                                                                                                 | mg/L   | mg/L     | mg/L                                                                                                           | mg/L      | mg/L                                                                   | mg/L  | mg/L                           | mg/L |
| Detection limit (DL) | 0.01      | 0.001                                                                                                                                                                                                                                                                                                                                                                                                              | 0.001                                                                                                                                                                                                                                                                                                                                                                                    | 0.001                                                                                                                                                                                                                                                                                                                                                          | 0.001  | 0.0001                                                                                                                                                                                                                                                                                                                 | 0.001                                                                                                                                                                                                                                                                                        | 0.001   | 0.001                                                                                                                                                                                                                                                | 0.001                                                                                                                                                                                                                      | 0.001      | 0.001        | 0.001                                                                                                                                                                | 0.001  | 0.001    | 0.01                                                                                                           | 0.001     | 0.001                                                                  | 0.005 | 0.05                           | 0.05 |
| Sample size (n)      | 9         | 9                                                                                                                                                                                                                                                                                                                                                                                                                  | 9                                                                                                                                                                                                                                                                                                                                                                                        | 9                                                                                                                                                                                                                                                                                                                                                              | 9      | 9                                                                                                                                                                                                                                                                                                                      | 9                                                                                                                                                                                                                                                                                            | 9       | 9                                                                                                                                                                                                                                                    | 9                                                                                                                                                                                                                          | 9          | 9            | 9                                                                                                                                                                    | 9      | 9        | 9                                                                                                              | 9         | 9                                                                      | 9     | 9                              | 9    |
| n > DL               | 5         | 0                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                              | 9      | 0                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                            | 9       | 0                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                          | 9          | 9            | 0                                                                                                                                                                    | 9      | 9        | 0                                                                                                              | 9         | 0                                                                      | 9     | 0                              | 2    |
| Min                  | 0.01      | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.011</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>0.006</td><td>0.024</td><td><dl< td=""><td>0.012</td><td>0.004</td><td><dl< td=""><td>0.017</td><td><dl< td=""><td>0.012</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td>0.011</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>0.006</td><td>0.024</td><td><dl< td=""><td>0.012</td><td>0.004</td><td><dl< td=""><td>0.017</td><td><dl< td=""><td>0.012</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.011</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>0.006</td><td>0.024</td><td><dl< td=""><td>0.012</td><td>0.004</td><td><dl< td=""><td>0.017</td><td><dl< td=""><td>0.012</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.011  | <dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>0.006</td><td>0.024</td><td><dl< td=""><td>0.012</td><td>0.004</td><td><dl< td=""><td>0.017</td><td><dl< td=""><td>0.012</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>0.006</td><td>0.024</td><td><dl< td=""><td>0.012</td><td>0.004</td><td><dl< td=""><td>0.017</td><td><dl< td=""><td>0.012</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.001   | <dl< td=""><td><dl< td=""><td>0.006</td><td>0.024</td><td><dl< td=""><td>0.012</td><td>0.004</td><td><dl< td=""><td>0.017</td><td><dl< td=""><td>0.012</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.006</td><td>0.024</td><td><dl< td=""><td>0.012</td><td>0.004</td><td><dl< td=""><td>0.017</td><td><dl< td=""><td>0.012</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.006      | 0.024        | <dl< td=""><td>0.012</td><td>0.004</td><td><dl< td=""><td>0.017</td><td><dl< td=""><td>0.012</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<> | 0.012  | 0.004    | <dl< td=""><td>0.017</td><td><dl< td=""><td>0.012</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<> | 0.017     | <dl< td=""><td>0.012</td><td><dl< td=""><td>0.06</td></dl<></td></dl<> | 0.012 | <dl< td=""><td>0.06</td></dl<> | 0.06 |
| Median               | 0.01      | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.018</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.013</td><td>0.036</td><td><dl< td=""><td>0.016</td><td>0.011</td><td><dl< td=""><td>0.044</td><td><dl< td=""><td>0.024</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | <dl< td=""><td><dl< td=""><td>0.018</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.013</td><td>0.036</td><td><dl< td=""><td>0.016</td><td>0.011</td><td><dl< td=""><td>0.044</td><td><dl< td=""><td>0.024</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | <dl< td=""><td>0.018</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.013</td><td>0.036</td><td><dl< td=""><td>0.016</td><td>0.011</td><td><dl< td=""><td>0.044</td><td><dl< td=""><td>0.024</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.018  | <dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.013</td><td>0.036</td><td><dl< td=""><td>0.016</td><td>0.011</td><td><dl< td=""><td>0.044</td><td><dl< td=""><td>0.024</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | <dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.013</td><td>0.036</td><td><dl< td=""><td>0.016</td><td>0.011</td><td><dl< td=""><td>0.044</td><td><dl< td=""><td>0.024</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.002   | <dl< td=""><td><dl< td=""><td>0.013</td><td>0.036</td><td><dl< td=""><td>0.016</td><td>0.011</td><td><dl< td=""><td>0.044</td><td><dl< td=""><td>0.024</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | <dl< td=""><td>0.013</td><td>0.036</td><td><dl< td=""><td>0.016</td><td>0.011</td><td><dl< td=""><td>0.044</td><td><dl< td=""><td>0.024</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.013      | 0.036        | <dl< td=""><td>0.016</td><td>0.011</td><td><dl< td=""><td>0.044</td><td><dl< td=""><td>0.024</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>    | 0.016  | 0.011    | <dl< td=""><td>0.044</td><td><dl< td=""><td>0.024</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>    | 0.044     | <dl< td=""><td>0.024</td><td><dl< td=""><td>-</td></dl<></td></dl<>    | 0.024 | <dl< td=""><td>-</td></dl<>    | -    |
| Mean                 | 0.02      | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.018</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.012</td><td>0.037</td><td><dl< td=""><td>0.018</td><td>0.010</td><td><dl< td=""><td>0.043</td><td><dl< td=""><td>0.022</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | <dl< td=""><td><dl< td=""><td>0.018</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.012</td><td>0.037</td><td><dl< td=""><td>0.018</td><td>0.010</td><td><dl< td=""><td>0.043</td><td><dl< td=""><td>0.022</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | <dl< td=""><td>0.018</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.012</td><td>0.037</td><td><dl< td=""><td>0.018</td><td>0.010</td><td><dl< td=""><td>0.043</td><td><dl< td=""><td>0.022</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.018  | <dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.012</td><td>0.037</td><td><dl< td=""><td>0.018</td><td>0.010</td><td><dl< td=""><td>0.043</td><td><dl< td=""><td>0.022</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | <dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.012</td><td>0.037</td><td><dl< td=""><td>0.018</td><td>0.010</td><td><dl< td=""><td>0.043</td><td><dl< td=""><td>0.022</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.002   | <dl< td=""><td><dl< td=""><td>0.012</td><td>0.037</td><td><dl< td=""><td>0.018</td><td>0.010</td><td><dl< td=""><td>0.043</td><td><dl< td=""><td>0.022</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | <dl< td=""><td>0.012</td><td>0.037</td><td><dl< td=""><td>0.018</td><td>0.010</td><td><dl< td=""><td>0.043</td><td><dl< td=""><td>0.022</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.012      | 0.037        | <dl< td=""><td>0.018</td><td>0.010</td><td><dl< td=""><td>0.043</td><td><dl< td=""><td>0.022</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>    | 0.018  | 0.010    | <dl< td=""><td>0.043</td><td><dl< td=""><td>0.022</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>    | 0.043     | <dl< td=""><td>0.022</td><td><dl< td=""><td>-</td></dl<></td></dl<>    | 0.022 | <dl< td=""><td>-</td></dl<>    | -    |
| SD                   | 0.03      | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td>0.013</td><td><dl< td=""><td>0.005</td><td>0.003</td><td><dl< td=""><td>0.011</td><td><dl< td=""><td>0.006</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | <dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td>0.013</td><td><dl< td=""><td>0.005</td><td>0.003</td><td><dl< td=""><td>0.011</td><td><dl< td=""><td>0.006</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | <dl< td=""><td>0.003</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td>0.013</td><td><dl< td=""><td>0.005</td><td>0.003</td><td><dl< td=""><td>0.011</td><td><dl< td=""><td>0.006</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.003  | <dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td>0.013</td><td><dl< td=""><td>0.005</td><td>0.003</td><td><dl< td=""><td>0.011</td><td><dl< td=""><td>0.006</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | <dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td>0.013</td><td><dl< td=""><td>0.005</td><td>0.003</td><td><dl< td=""><td>0.011</td><td><dl< td=""><td>0.006</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.001   | <dl< td=""><td><dl< td=""><td>0.002</td><td>0.013</td><td><dl< td=""><td>0.005</td><td>0.003</td><td><dl< td=""><td>0.011</td><td><dl< td=""><td>0.006</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | <dl< td=""><td>0.002</td><td>0.013</td><td><dl< td=""><td>0.005</td><td>0.003</td><td><dl< td=""><td>0.011</td><td><dl< td=""><td>0.006</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.002      | 0.013        | <dl< td=""><td>0.005</td><td>0.003</td><td><dl< td=""><td>0.011</td><td><dl< td=""><td>0.006</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>    | 0.005  | 0.003    | <dl< td=""><td>0.011</td><td><dl< td=""><td>0.006</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>    | 0.011     | <dl< td=""><td>0.006</td><td><dl< td=""><td>-</td></dl<></td></dl<>    | 0.006 | <dl< td=""><td>-</td></dl<>    | -    |
| 80th percentile      | 0.02      | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.019</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.014</td><td>0.048</td><td><dl< td=""><td>0.019</td><td>0.011</td><td><dl< td=""><td>0.049</td><td><dl< td=""><td>0.026</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | <dl< td=""><td><dl< td=""><td>0.019</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.014</td><td>0.048</td><td><dl< td=""><td>0.019</td><td>0.011</td><td><dl< td=""><td>0.049</td><td><dl< td=""><td>0.026</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | <dl< td=""><td>0.019</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.014</td><td>0.048</td><td><dl< td=""><td>0.019</td><td>0.011</td><td><dl< td=""><td>0.049</td><td><dl< td=""><td>0.026</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.019  | <dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.014</td><td>0.048</td><td><dl< td=""><td>0.019</td><td>0.011</td><td><dl< td=""><td>0.049</td><td><dl< td=""><td>0.026</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | <dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.014</td><td>0.048</td><td><dl< td=""><td>0.019</td><td>0.011</td><td><dl< td=""><td>0.049</td><td><dl< td=""><td>0.026</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.002   | <dl< td=""><td><dl< td=""><td>0.014</td><td>0.048</td><td><dl< td=""><td>0.019</td><td>0.011</td><td><dl< td=""><td>0.049</td><td><dl< td=""><td>0.026</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | <dl< td=""><td>0.014</td><td>0.048</td><td><dl< td=""><td>0.019</td><td>0.011</td><td><dl< td=""><td>0.049</td><td><dl< td=""><td>0.026</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.014      | 0.048        | <dl< td=""><td>0.019</td><td>0.011</td><td><dl< td=""><td>0.049</td><td><dl< td=""><td>0.026</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>    | 0.019  | 0.011    | <dl< td=""><td>0.049</td><td><dl< td=""><td>0.026</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>    | 0.049     | <dl< td=""><td>0.026</td><td><dl< td=""><td>-</td></dl<></td></dl<>    | 0.026 | <dl< td=""><td>-</td></dl<>    | -    |
| Max                  | 0.09      | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.022</td><td><dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td><dl< td=""><td>0.014</td><td>0.061</td><td><dl< td=""><td>0.029</td><td>0.014</td><td><dl< td=""><td>0.054</td><td><dl< td=""><td>0.028</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td>0.022</td><td><dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td><dl< td=""><td>0.014</td><td>0.061</td><td><dl< td=""><td>0.029</td><td>0.014</td><td><dl< td=""><td>0.054</td><td><dl< td=""><td>0.028</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.022</td><td><dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td><dl< td=""><td>0.014</td><td>0.061</td><td><dl< td=""><td>0.029</td><td>0.014</td><td><dl< td=""><td>0.054</td><td><dl< td=""><td>0.028</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.022  | <dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td><dl< td=""><td>0.014</td><td>0.061</td><td><dl< td=""><td>0.029</td><td>0.014</td><td><dl< td=""><td>0.054</td><td><dl< td=""><td>0.028</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.003</td><td><dl< td=""><td><dl< td=""><td>0.014</td><td>0.061</td><td><dl< td=""><td>0.029</td><td>0.014</td><td><dl< td=""><td>0.054</td><td><dl< td=""><td>0.028</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.003   | <dl< td=""><td><dl< td=""><td>0.014</td><td>0.061</td><td><dl< td=""><td>0.029</td><td>0.014</td><td><dl< td=""><td>0.054</td><td><dl< td=""><td>0.028</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.014</td><td>0.061</td><td><dl< td=""><td>0.029</td><td>0.014</td><td><dl< td=""><td>0.054</td><td><dl< td=""><td>0.028</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.014      | 0.061        | <dl< td=""><td>0.029</td><td>0.014</td><td><dl< td=""><td>0.054</td><td><dl< td=""><td>0.028</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<> | 0.029  | 0.014    | <dl< td=""><td>0.054</td><td><dl< td=""><td>0.028</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<> | 0.054     | <dl< td=""><td>0.028</td><td><dl< td=""><td>0.06</td></dl<></td></dl<> | 0.028 | <dl< td=""><td>0.06</td></dl<> | 0.06 |
|                      |           |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                              |         |                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                          | issolved N | letals       |                                                                                                                                                                      |        |          |                                                                                                                |           |                                                                        |       |                                |      |
|                      | Aluminium | Antimony                                                                                                                                                                                                                                                                                                                                                                                                           | Arsenic                                                                                                                                                                                                                                                                                                                                                                                  | Beryllium                                                                                                                                                                                                                                                                                                                                                      | Barium | Cadmium                                                                                                                                                                                                                                                                                                                | Chromium                                                                                                                                                                                                                                                                                     | Cobalt  | Copper                                                                                                                                                                                                                                               | Lead                                                                                                                                                                                                                       | Lithium    | Manganese    | Molybdenum                                                                                                                                                           | Nickel | Rubidium | Selenium                                                                                                       | Strontium | Uranium                                                                | Zinc  | Boron                          | Iron |
|                      | mg/L      | mg/L                                                                                                                                                                                                                                                                                                                                                                                                               | mg/L                                                                                                                                                                                                                                                                                                                                                                                     | mg/L                                                                                                                                                                                                                                                                                                                                                           | mg/L   | mg/L                                                                                                                                                                                                                                                                                                                   | mg/L                                                                                                                                                                                                                                                                                         | mg/L    | mg/L                                                                                                                                                                                                                                                 | mg/L                                                                                                                                                                                                                       | mg/L       | mg/L         | mg/L                                                                                                                                                                 | mg/L   | mg/L     | mg/L                                                                                                           | mg/L      | mg/L                                                                   | mg/L  | mg/L                           | mg/L |
| Detection limit (DL) | 0.01      | 0.001                                                                                                                                                                                                                                                                                                                                                                                                              | 0.001                                                                                                                                                                                                                                                                                                                                                                                    | 0.001                                                                                                                                                                                                                                                                                                                                                          | 0.001  | 0.0001                                                                                                                                                                                                                                                                                                                 | 0.001                                                                                                                                                                                                                                                                                        | 0.001   | 0.001                                                                                                                                                                                                                                                | 0.001                                                                                                                                                                                                                      | 0.001      | 0.001        | 0.001                                                                                                                                                                | 0.001  | 0.001    | 0.01                                                                                                           | 0.001     | 0.001                                                                  | 0.005 | 0.05                           | 0.05 |
| Sample size (n)      | 9         | 9                                                                                                                                                                                                                                                                                                                                                                                                                  | 9                                                                                                                                                                                                                                                                                                                                                                                        | 9                                                                                                                                                                                                                                                                                                                                                              | 9      | 9                                                                                                                                                                                                                                                                                                                      | 9                                                                                                                                                                                                                                                                                            | 9       | 9                                                                                                                                                                                                                                                    | 9                                                                                                                                                                                                                          | 9          | 9            | 9                                                                                                                                                                    | 9      | 9        | 9                                                                                                              | 9         | 9                                                                      | 9     | 9                              | 9    |
| n > DL               | 1         | 0                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                              | 9      | 0                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                            | 9       | 0                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                          | 9          | 9            | 0                                                                                                                                                                    | 9      | 9        | 0                                                                                                              | 9         | 0                                                                      | 9     | 0                              | 1    |
| Min                  | -         | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.011</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>0.006</td><td>0.023</td><td><dl< td=""><td>0.011</td><td>0.005</td><td><dl< td=""><td>0.018</td><td><dl< td=""><td>0.011</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | <dl< td=""><td><dl< td=""><td>0.011</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>0.006</td><td>0.023</td><td><dl< td=""><td>0.011</td><td>0.005</td><td><dl< td=""><td>0.018</td><td><dl< td=""><td>0.011</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | <dl< td=""><td>0.011</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>0.006</td><td>0.023</td><td><dl< td=""><td>0.011</td><td>0.005</td><td><dl< td=""><td>0.018</td><td><dl< td=""><td>0.011</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.011  | <dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>0.006</td><td>0.023</td><td><dl< td=""><td>0.011</td><td>0.005</td><td><dl< td=""><td>0.018</td><td><dl< td=""><td>0.011</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | <dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>0.006</td><td>0.023</td><td><dl< td=""><td>0.011</td><td>0.005</td><td><dl< td=""><td>0.018</td><td><dl< td=""><td>0.011</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.001   | <dl< td=""><td><dl< td=""><td>0.006</td><td>0.023</td><td><dl< td=""><td>0.011</td><td>0.005</td><td><dl< td=""><td>0.018</td><td><dl< td=""><td>0.011</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | <dl< td=""><td>0.006</td><td>0.023</td><td><dl< td=""><td>0.011</td><td>0.005</td><td><dl< td=""><td>0.018</td><td><dl< td=""><td>0.011</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.006      | 0.023        | <dl< td=""><td>0.011</td><td>0.005</td><td><dl< td=""><td>0.018</td><td><dl< td=""><td>0.011</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>    | 0.011  | 0.005    | <dl< td=""><td>0.018</td><td><dl< td=""><td>0.011</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>    | 0.018     | <dl< td=""><td>0.011</td><td><dl< td=""><td>-</td></dl<></td></dl<>    | 0.011 | <dl< td=""><td>-</td></dl<>    | -    |
| Median               | -         | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.017</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.011</td><td>0.034</td><td><dl< td=""><td>0.015</td><td>0.010</td><td><dl< td=""><td>0.042</td><td><dl< td=""><td>0.021</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | <dl< td=""><td><dl< td=""><td>0.017</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.011</td><td>0.034</td><td><dl< td=""><td>0.015</td><td>0.010</td><td><dl< td=""><td>0.042</td><td><dl< td=""><td>0.021</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | <dl< td=""><td>0.017</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.011</td><td>0.034</td><td><dl< td=""><td>0.015</td><td>0.010</td><td><dl< td=""><td>0.042</td><td><dl< td=""><td>0.021</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.017  | <dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.011</td><td>0.034</td><td><dl< td=""><td>0.015</td><td>0.010</td><td><dl< td=""><td>0.042</td><td><dl< td=""><td>0.021</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | <dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.011</td><td>0.034</td><td><dl< td=""><td>0.015</td><td>0.010</td><td><dl< td=""><td>0.042</td><td><dl< td=""><td>0.021</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.002   | <dl< td=""><td><dl< td=""><td>0.011</td><td>0.034</td><td><dl< td=""><td>0.015</td><td>0.010</td><td><dl< td=""><td>0.042</td><td><dl< td=""><td>0.021</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | <dl< td=""><td>0.011</td><td>0.034</td><td><dl< td=""><td>0.015</td><td>0.010</td><td><dl< td=""><td>0.042</td><td><dl< td=""><td>0.021</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.011      | 0.034        | <dl< td=""><td>0.015</td><td>0.010</td><td><dl< td=""><td>0.042</td><td><dl< td=""><td>0.021</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>    | 0.015  | 0.010    | <dl< td=""><td>0.042</td><td><dl< td=""><td>0.021</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>    | 0.042     | <dl< td=""><td>0.021</td><td><dl< td=""><td>-</td></dl<></td></dl<>    | 0.021 | <dl< td=""><td>-</td></dl<>    | -    |
| Mean                 | -         | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.016</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.011</td><td>0.034</td><td><dl< td=""><td>0.016</td><td>0.010</td><td><dl< td=""><td>0.040</td><td><dl< td=""><td>0.022</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | <dl< td=""><td><dl< td=""><td>0.016</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.011</td><td>0.034</td><td><dl< td=""><td>0.016</td><td>0.010</td><td><dl< td=""><td>0.040</td><td><dl< td=""><td>0.022</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | <dl< td=""><td>0.016</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.011</td><td>0.034</td><td><dl< td=""><td>0.016</td><td>0.010</td><td><dl< td=""><td>0.040</td><td><dl< td=""><td>0.022</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.016  | <dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.011</td><td>0.034</td><td><dl< td=""><td>0.016</td><td>0.010</td><td><dl< td=""><td>0.040</td><td><dl< td=""><td>0.022</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | <dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.011</td><td>0.034</td><td><dl< td=""><td>0.016</td><td>0.010</td><td><dl< td=""><td>0.040</td><td><dl< td=""><td>0.022</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.002   | <dl< td=""><td><dl< td=""><td>0.011</td><td>0.034</td><td><dl< td=""><td>0.016</td><td>0.010</td><td><dl< td=""><td>0.040</td><td><dl< td=""><td>0.022</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | <dl< td=""><td>0.011</td><td>0.034</td><td><dl< td=""><td>0.016</td><td>0.010</td><td><dl< td=""><td>0.040</td><td><dl< td=""><td>0.022</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.011      | 0.034        | <dl< td=""><td>0.016</td><td>0.010</td><td><dl< td=""><td>0.040</td><td><dl< td=""><td>0.022</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>    | 0.016  | 0.010    | <dl< td=""><td>0.040</td><td><dl< td=""><td>0.022</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>    | 0.040     | <dl< td=""><td>0.022</td><td><dl< td=""><td>-</td></dl<></td></dl<>    | 0.022 | <dl< td=""><td>-</td></dl<>    | -    |
| SD                   | -         | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td>0.012</td><td><dl< td=""><td>0.004</td><td>0.002</td><td><dl< td=""><td>0.009</td><td><dl< td=""><td>0.006</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | <dl< td=""><td><dl< td=""><td>0.003</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td>0.012</td><td><dl< td=""><td>0.004</td><td>0.002</td><td><dl< td=""><td>0.009</td><td><dl< td=""><td>0.006</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | <dl< td=""><td>0.003</td><td><dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td>0.012</td><td><dl< td=""><td>0.004</td><td>0.002</td><td><dl< td=""><td>0.009</td><td><dl< td=""><td>0.006</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.003  | <dl< td=""><td><dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td>0.012</td><td><dl< td=""><td>0.004</td><td>0.002</td><td><dl< td=""><td>0.009</td><td><dl< td=""><td>0.006</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | <dl< td=""><td>0.001</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td>0.012</td><td><dl< td=""><td>0.004</td><td>0.002</td><td><dl< td=""><td>0.009</td><td><dl< td=""><td>0.006</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.001   | <dl< td=""><td><dl< td=""><td>0.002</td><td>0.012</td><td><dl< td=""><td>0.004</td><td>0.002</td><td><dl< td=""><td>0.009</td><td><dl< td=""><td>0.006</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | <dl< td=""><td>0.002</td><td>0.012</td><td><dl< td=""><td>0.004</td><td>0.002</td><td><dl< td=""><td>0.009</td><td><dl< td=""><td>0.006</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.002      | 0.012        | <dl< td=""><td>0.004</td><td>0.002</td><td><dl< td=""><td>0.009</td><td><dl< td=""><td>0.006</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>    | 0.004  | 0.002    | <dl< td=""><td>0.009</td><td><dl< td=""><td>0.006</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>    | 0.009     | <dl< td=""><td>0.006</td><td><dl< td=""><td>-</td></dl<></td></dl<>    | 0.006 | <dl< td=""><td>-</td></dl<>    | -    |
| 80th percentile      | -         | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.017</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.012</td><td>0.038</td><td><dl< td=""><td>0.018</td><td>0.012</td><td><dl< td=""><td>0.045</td><td><dl< td=""><td>0.026</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | <dl< td=""><td><dl< td=""><td>0.017</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.012</td><td>0.038</td><td><dl< td=""><td>0.018</td><td>0.012</td><td><dl< td=""><td>0.045</td><td><dl< td=""><td>0.026</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | <dl< td=""><td>0.017</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.012</td><td>0.038</td><td><dl< td=""><td>0.018</td><td>0.012</td><td><dl< td=""><td>0.045</td><td><dl< td=""><td>0.026</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.017  | <dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.012</td><td>0.038</td><td><dl< td=""><td>0.018</td><td>0.012</td><td><dl< td=""><td>0.045</td><td><dl< td=""><td>0.026</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | <dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.012</td><td>0.038</td><td><dl< td=""><td>0.018</td><td>0.012</td><td><dl< td=""><td>0.045</td><td><dl< td=""><td>0.026</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.002   | <dl< td=""><td><dl< td=""><td>0.012</td><td>0.038</td><td><dl< td=""><td>0.018</td><td>0.012</td><td><dl< td=""><td>0.045</td><td><dl< td=""><td>0.026</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | <dl< td=""><td>0.012</td><td>0.038</td><td><dl< td=""><td>0.018</td><td>0.012</td><td><dl< td=""><td>0.045</td><td><dl< td=""><td>0.026</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>    | 0.012      | 0.038        | <dl< td=""><td>0.018</td><td>0.012</td><td><dl< td=""><td>0.045</td><td><dl< td=""><td>0.026</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<></td></dl<>    | 0.018  | 0.012    | <dl< td=""><td>0.045</td><td><dl< td=""><td>0.026</td><td><dl< td=""><td>-</td></dl<></td></dl<></td></dl<>    | 0.045     | <dl< td=""><td>0.026</td><td><dl< td=""><td>-</td></dl<></td></dl<>    | 0.026 | <dl< td=""><td>-</td></dl<>    | -    |
| Max                  | 0.09      | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.020</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.014</td><td>0.062</td><td><dl< td=""><td>0.025</td><td>0.013</td><td><dl< td=""><td>0.046</td><td><dl< td=""><td>0.033</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td>0.020</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.014</td><td>0.062</td><td><dl< td=""><td>0.025</td><td>0.013</td><td><dl< td=""><td>0.046</td><td><dl< td=""><td>0.033</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.020</td><td><dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.014</td><td>0.062</td><td><dl< td=""><td>0.025</td><td>0.013</td><td><dl< td=""><td>0.046</td><td><dl< td=""><td>0.033</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.020  | <dl< td=""><td><dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.014</td><td>0.062</td><td><dl< td=""><td>0.025</td><td>0.013</td><td><dl< td=""><td>0.046</td><td><dl< td=""><td>0.033</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.002</td><td><dl< td=""><td><dl< td=""><td>0.014</td><td>0.062</td><td><dl< td=""><td>0.025</td><td>0.013</td><td><dl< td=""><td>0.046</td><td><dl< td=""><td>0.033</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.002   | <dl< td=""><td><dl< td=""><td>0.014</td><td>0.062</td><td><dl< td=""><td>0.025</td><td>0.013</td><td><dl< td=""><td>0.046</td><td><dl< td=""><td>0.033</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>0.014</td><td>0.062</td><td><dl< td=""><td>0.025</td><td>0.013</td><td><dl< td=""><td>0.046</td><td><dl< td=""><td>0.033</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | 0.014      | 0.062        | <dl< td=""><td>0.025</td><td>0.013</td><td><dl< td=""><td>0.046</td><td><dl< td=""><td>0.033</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<></td></dl<> | 0.025  | 0.013    | <dl< td=""><td>0.046</td><td><dl< td=""><td>0.033</td><td><dl< td=""><td>0.06</td></dl<></td></dl<></td></dl<> | 0.046     | <dl< td=""><td>0.033</td><td><dl< td=""><td>0.06</td></dl<></td></dl<> | 0.033 | <dl< td=""><td>0.06</td></dl<> | 0.06 |



Total Aluminium





Total Barium

**Dissolved Barium** 





Total Cobalt



Dissolved Cobalt









Total Manganese





Page 48







**Dissolved Rubidium** 





**Dissolved Strontium** 





Dissolved Zinc



Sample month





Sample month











































### 4. SEDIMENT QUALITY & COAL FINES MONITORING RESULTS

The Sediment Metals data for this reporting period are located in **Appendix B** and the available Microscopic Analysis Reports plus Petrography results are provided in **Appendix C**.

**Section 4.1** provides a summary of sediment and fines monitoring methods and outlines how the data are presented.

Sediment total metals summary results are provided in **Section 4.2**. **Section 4.3** provides the Petrography summary results and **Section 4.4** summarises the results of the Visual inspection for coal fines.

### 4.1 Methods and Data Presentation

#### Field Methods:

Sediment sampling for the present six-monthly reporting period has been undertaken as per the EMP requirements:

- Three replicate sediment samples are collected to a depth of 10 cm at each of the nominated sites.
- The replicates are spaced 10m apart along a 20m stretch of the river.
- Samples are labelled and kept chilled for transport to the analysis laboratory.
- The laboratory then splits each replicate sample with one half submitted for total metal in sediment analysis for the same suite of analytes nominated for the water quality sampling.
- The other half of each split replicate sample is submitted for petrographic analysis.

For the coal-fine searches, visual inspections were made of the relevant sampling areas at all sampling events and at least once per quarter, visual searches were completed covering a distance of approximately 500m upstream and 500m downstream of each sampling location.

#### Data Presentation:

For **Sections 4.2** and **4.3**, the results are presented in **Summary Tables**, and are shown graphically in **Control Charts** and **Box-plots**:

- The Section 4.2 Summary Tables present the analyte detection limit (DL), sample size, the number of sample values above DL, minimum, median, mean, standard deviation (SD) of the mean, 80<sup>th</sup> percentile and maximum value for each analyte over all sampling events to date. Note that all concentration data are presented as mg/Kg.
- Results for analytes that have all or most analytic results below detection are shaded in grey with no (or reduced) sample statistics calculated and no bar charts or box plots produced.
- Depending on sample size the following general rules apply to calculation of site statistics:
  - If no values >DL, DL indicated in all statistical cells (the min, max, mean cells etc).
  - o if one value >DL, then maximum value only shown,
  - o if two values >DL, then maximum and minimum values shown only,
  - If three values >DL (for sample size of 5 through to 10), then use half DL values for calculation of statistics, and show the DL as the minimum value.
  - For analytes with 3 or more values above DL, median, mean, SD and 80<sup>th</sup> percentile statistics are calculated using halve DL values.

- The **Control Charts** provide results for the concentrations of each analyte over time for all seven sites, from the first sample run in the first monitoring period (August 2016) to the most recent sample for this current monitoring period (August 2018). Most are shown in line graph mode.
  - Where analyte values are similar across sites making discrimination of site differences difficult to see in line graph mode, the control graphs are shown in the form of clustered bar charts.
  - For the initial sediment analysis (i.e., for samples collected in August 16), the detection limits for all analytes were set high and most were adjusted down for subsequent analyses. Consequently, statistical results for the first sample run where DL values have been set at half detection, result in a higher graphed value than subsequent data utilising half the lower detection limits. The site data that are affected are DS1 to DS3 and all analytes are affected except Aluminium, Boron, Iron and Sulphur as S (where the detection limit has remained unchanged at 50mg/kg) and for Cobalt, Manganese and Zinc where there were no values lower than detection for these sites on that occasion.
- **Box Plots** compare the summary statistical results for each analyte per site over the complete sampling program to data:
  - The upper and lower sides of the main box show the quartile (75 and 25 percentile) values for the data. The range between these values is called the interquartile range (IQR).
  - The line through the box shows the median (50 percentile) for the data and the cross (X) shows the mean value for the data.
  - The box 'whiskers' generally show the maximum and minimum values provided the data are all within 1.5 IQRs either side of the IQR.
  - If there are outlier data (i.e. values outside this range), they are shown as small circles located on both sides or on one side of the whiskers (depending whether the outliers are very low or very high value) and the whiskers on the side that have outliers then shows the 1.5 IQR limits for the data. Outliers will then indicate the relevant minimum or maximum value.

## 4.2 Sediment Total Metal Monitoring Data

The sediment total metal summary statistics for each sampling location and event are provided below in Site Summary **Tables 21 to 26**, Control Charts, and Box Plots:

- Selenium (DL < 1 mg/kg) and Boron (DL< 50mg/kg) concentrations were all <DL for all sites and for all sampling times to date, and are not plotted as Control Graphs or Box Plots.
- Cadmium (DL < 0.1mg/kg) concentrations were all <DL for all sites and for all sampling times to date with a signal replicate sample analysis at US2 that had a concentration value of 0.2 mg/kg. Cadmium results are not plotted as Control Graphs or Box Plots.
- Beryllium and Molybdenum concentrations were <DL (0.1mg/kg) at site US1 for 26 of the 27 replicate samples and for 23 of 27 the replicate samples at DS4.
- Uranium concentrations were <DL (0.1mg/kg) for 26 of the 27 replicate samples for US1 and 25 of 27 the replicate samples at DS4.
- Sulfur concentrations were <DL (50mg/kg) for 25 of 27 replicate samples at US1 and 24 of 27 the replicate samples at DS4.

|                      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |        |           |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                     |          | Table 21 | US1 Se | diment S | Summar    | y Statistic | s         |                                                                                                                     |        |          |                                                                   |           |             |         | -    |
|----------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|--------|----------|-----------|-------------|-----------|---------------------------------------------------------------------------------------------------------------------|--------|----------|-------------------------------------------------------------------|-----------|-------------|---------|------|
|                      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |        |           |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                     |          |          |        | ٦        | otal Meta | als         |           |                                                                                                                     |        |          |                                                                   |           |             |         |      |
|                      | Aluminium | Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Arsenic | Barium | Beryllium | Boron                                                                                                                                                                                                                                                         | Cadmium                                                                                                                                                                                                                             | Chromium | Cobalt   | Copper | Iron     | Lead      | Lithium     | Manganese | Molybdenum                                                                                                          | Nickel | Rubidium | Selenium                                                          | Strontium | Sulfur as S | Uranium | Zinc |
| Detection limit (DL) | 50        | $\frac{1}{1000} + \frac{1}{1000} + 1$ |         |        |           |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                     |          |          |        |          |           |             |           |                                                                                                                     | 0.5    |          |                                                                   |           |             |         |      |
| Sample size (n)      | 27        | 50 0.1 0.1 0.1 50 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |        |           |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                     |          |          |        |          |           |             |           |                                                                                                                     | 27     |          |                                                                   |           |             |         |      |
| n > DL               | 27        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22      | 27     | 1         | 0                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                   | 27       | 27       | 26     | 27       | 27        | 20          | 27        | 0                                                                                                                   | 21     | 27       | 0                                                                 | 27        | 2           | 1       | 22   |
| Min                  | 210       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1     | 0.8    | -         | <dl< td=""><td><dl< td=""><td>0.2</td><td>0.1</td><td>0.1</td><td>810</td><td>0.3</td><td>0.1</td><td>11.2</td><td><dl< td=""><td>0.1</td><td>0.1</td><td><dl< td=""><td>0.2</td><td>90</td><td>-</td><td>0.5</td></dl<></td></dl<></td></dl<></td></dl<>     | <dl< td=""><td>0.2</td><td>0.1</td><td>0.1</td><td>810</td><td>0.3</td><td>0.1</td><td>11.2</td><td><dl< td=""><td>0.1</td><td>0.1</td><td><dl< td=""><td>0.2</td><td>90</td><td>-</td><td>0.5</td></dl<></td></dl<></td></dl<>     | 0.2      | 0.1      | 0.1    | 810      | 0.3       | 0.1         | 11.2      | <dl< td=""><td>0.1</td><td>0.1</td><td><dl< td=""><td>0.2</td><td>90</td><td>-</td><td>0.5</td></dl<></td></dl<>    | 0.1    | 0.1      | <dl< td=""><td>0.2</td><td>90</td><td>-</td><td>0.5</td></dl<>    | 0.2       | 90          | -       | 0.5  |
| Median               | 470.0     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2     | 1.9    | -         | <dl< td=""><td><dl< td=""><td>0.6</td><td>0.4</td><td>0.4</td><td>1830.0</td><td>0.6</td><td>0.1</td><td>46.2</td><td><dl< td=""><td>0.2</td><td>0.3</td><td><dl< td=""><td>0.6</td><td>-</td><td>-</td><td>0.8</td></dl<></td></dl<></td></dl<></td></dl<>   | <dl< td=""><td>0.6</td><td>0.4</td><td>0.4</td><td>1830.0</td><td>0.6</td><td>0.1</td><td>46.2</td><td><dl< td=""><td>0.2</td><td>0.3</td><td><dl< td=""><td>0.6</td><td>-</td><td>-</td><td>0.8</td></dl<></td></dl<></td></dl<>   | 0.6      | 0.4      | 0.4    | 1830.0   | 0.6       | 0.1         | 46.2      | <dl< td=""><td>0.2</td><td>0.3</td><td><dl< td=""><td>0.6</td><td>-</td><td>-</td><td>0.8</td></dl<></td></dl<>     | 0.2    | 0.3      | <dl< td=""><td>0.6</td><td>-</td><td>-</td><td>0.8</td></dl<>     | 0.6       | -           | -       | 0.8  |
| Mean                 | 881.5     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2     | 3.3    | -         | <dl< td=""><td><dl< td=""><td>0.8</td><td>0.8</td><td>0.7</td><td>2918.5</td><td>1.0</td><td>0.2</td><td>87.1</td><td><dl< td=""><td>0.2</td><td>0.4</td><td><dl< td=""><td>0.7</td><td>-</td><td>-</td><td>1.1</td></dl<></td></dl<></td></dl<></td></dl<>   | <dl< td=""><td>0.8</td><td>0.8</td><td>0.7</td><td>2918.5</td><td>1.0</td><td>0.2</td><td>87.1</td><td><dl< td=""><td>0.2</td><td>0.4</td><td><dl< td=""><td>0.7</td><td>-</td><td>-</td><td>1.1</td></dl<></td></dl<></td></dl<>   | 0.8      | 0.8      | 0.7    | 2918.5   | 1.0       | 0.2         | 87.1      | <dl< td=""><td>0.2</td><td>0.4</td><td><dl< td=""><td>0.7</td><td>-</td><td>-</td><td>1.1</td></dl<></td></dl<>     | 0.2    | 0.4      | <dl< td=""><td>0.7</td><td>-</td><td>-</td><td>1.1</td></dl<>     | 0.7       | -           | -       | 1.1  |
| SD                   | 1139.5    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2     | 3.9    | -         | <dl< td=""><td><dl< td=""><td>0.7</td><td>0.8</td><td>0.8</td><td>2549.3</td><td>1.4</td><td>0.1</td><td>112.7</td><td><dl< td=""><td>0.3</td><td>0.3</td><td><dl< td=""><td>0.7</td><td>-</td><td>-</td><td>1.0</td></dl<></td></dl<></td></dl<></td></dl<>  | <dl< td=""><td>0.7</td><td>0.8</td><td>0.8</td><td>2549.3</td><td>1.4</td><td>0.1</td><td>112.7</td><td><dl< td=""><td>0.3</td><td>0.3</td><td><dl< td=""><td>0.7</td><td>-</td><td>-</td><td>1.0</td></dl<></td></dl<></td></dl<>  | 0.7      | 0.8      | 0.8    | 2549.3   | 1.4       | 0.1         | 112.7     | <dl< td=""><td>0.3</td><td>0.3</td><td><dl< td=""><td>0.7</td><td>-</td><td>-</td><td>1.0</td></dl<></td></dl<>     | 0.3    | 0.3      | <dl< td=""><td>0.7</td><td>-</td><td>-</td><td>1.0</td></dl<>     | 0.7       | -           | -       | 1.0  |
| 80th percentile      | 856.0     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3     | 3.5    | -         | <dl< td=""><td><dl< td=""><td>1.2</td><td>1.0</td><td>1.0</td><td>3904.0</td><td>1.0</td><td>0.3</td><td>92.9</td><td><dl< td=""><td>0.3</td><td>0.5</td><td><dl< td=""><td>0.8</td><td>-</td><td>-</td><td>1.3</td></dl<></td></dl<></td></dl<></td></dl<>   | <dl< td=""><td>1.2</td><td>1.0</td><td>1.0</td><td>3904.0</td><td>1.0</td><td>0.3</td><td>92.9</td><td><dl< td=""><td>0.3</td><td>0.5</td><td><dl< td=""><td>0.8</td><td>-</td><td>-</td><td>1.3</td></dl<></td></dl<></td></dl<>   | 1.2      | 1.0      | 1.0    | 3904.0   | 1.0       | 0.3         | 92.9      | <dl< td=""><td>0.3</td><td>0.5</td><td><dl< td=""><td>0.8</td><td>-</td><td>-</td><td>1.3</td></dl<></td></dl<>     | 0.3    | 0.5      | <dl< td=""><td>0.8</td><td>-</td><td>-</td><td>1.3</td></dl<>     | 0.8       | -           | -       | 1.3  |
| Max                  | 4960      | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8     | 17     | 0.2       | <dl< td=""><td><dl< td=""><td>3.3</td><td>3.8</td><td>4.3</td><td>12200</td><td>7.2</td><td>0.6</td><td>553</td><td><dl< td=""><td>1.3</td><td>1.4</td><td><dl< td=""><td>3.3</td><td>140</td><td>0.2</td><td>4.9</td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td>3.3</td><td>3.8</td><td>4.3</td><td>12200</td><td>7.2</td><td>0.6</td><td>553</td><td><dl< td=""><td>1.3</td><td>1.4</td><td><dl< td=""><td>3.3</td><td>140</td><td>0.2</td><td>4.9</td></dl<></td></dl<></td></dl<> | 3.3      | 3.8      | 4.3    | 12200    | 7.2       | 0.6         | 553       | <dl< td=""><td>1.3</td><td>1.4</td><td><dl< td=""><td>3.3</td><td>140</td><td>0.2</td><td>4.9</td></dl<></td></dl<> | 1.3    | 1.4      | <dl< td=""><td>3.3</td><td>140</td><td>0.2</td><td>4.9</td></dl<> | 3.3       | 140         | 0.2     | 4.9  |

|                      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |        |           |                                                                                                                                                                                                                                               |         |          | Table 22 | US2 Se | diment S | Summai   | y Statistic | s         |            |        |          |                                                                       |           |             |         |       |
|----------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|----------|--------|----------|----------|-------------|-----------|------------|--------|----------|-----------------------------------------------------------------------|-----------|-------------|---------|-------|
|                      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |        |           |                                                                                                                                                                                                                                               |         |          |          |        | I        | otal Met | als         |           |            |        |          |                                                                       |           |             |         |       |
|                      | Aluminium | Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Arsenic | Barium | Beryllium | Boron                                                                                                                                                                                                                                         | Cadmium | Chromium | Cobalt   | Copper | Iron     | Lead     | Lithium     | Manganese | Molybdenum | Nickel | Rubidium | Selenium                                                              | Strontium | Sulfur as S | Uranium | Zinc  |
| Detection limit (DL) | 50        | 50   0.1   0.1   0.1   50   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1 |         |        |           |                                                                                                                                                                                                                                               |         |          |          |        |          |          |             |           |            |        | 0.5      |                                                                       |           |             |         |       |
| Sample size (n)      | 27        | 50   0.1   0.1   0.1   50   0.1   0.1   0.1   50   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1  |         |        |           |                                                                                                                                                                                                                                               |         |          |          |        |          |          |             |           |            |        | 27       |                                                                       |           |             |         |       |
| n > DL               | 27        | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27      | 27     | 26        | 0                                                                                                                                                                                                                                             | 6       | 27       | 27       | 27     | 27       | 27       | 27          | 27        | 26         | 27     | 27       | 0                                                                     | 27        | 9           | 12      | 27    |
| Min                  | 310       | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2     | 9.6    | 0.1       | <dl< td=""><td>0.1</td><td>0.2</td><td>5.1</td><td>0.6</td><td>610</td><td>0.5</td><td>0.1</td><td>103</td><td>0.1</td><td>6</td><td>0.2</td><td><dl< td=""><td>0.4</td><td>50</td><td>0.1</td><td>13.7</td></dl<></td></dl<>                 | 0.1     | 0.2      | 5.1      | 0.6    | 610      | 0.5      | 0.1         | 103       | 0.1        | 6      | 0.2      | <dl< td=""><td>0.4</td><td>50</td><td>0.1</td><td>13.7</td></dl<>     | 0.4       | 50          | 0.1     | 13.7  |
| Median               | 620.0     | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.3     | 22.2   | 0.2       | <dl< td=""><td>0.1</td><td>0.7</td><td>210.0</td><td>1.1</td><td>1730.0</td><td>1.3</td><td>4.5</td><td>1970.0</td><td>1.2</td><td>166.0</td><td>0.6</td><td><dl< td=""><td>1.3</td><td>25.0</td><td>0.1</td><td>220.0</td></dl<></td></dl<>  | 0.1     | 0.7      | 210.0    | 1.1    | 1730.0   | 1.3      | 4.5         | 1970.0    | 1.2        | 166.0  | 0.6      | <dl< td=""><td>1.3</td><td>25.0</td><td>0.1</td><td>220.0</td></dl<>  | 1.3       | 25.0        | 0.1     | 220.0 |
| Mean                 | 1222.2    | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.4     | 30.7   | 0.5       | <dl< td=""><td>0.1</td><td>1.1</td><td>293.5</td><td>2.8</td><td>2634.1</td><td>2.0</td><td>4.8</td><td>2717.6</td><td>1.5</td><td>250.0</td><td>0.7</td><td><dl< td=""><td>2.0</td><td>94.4</td><td>0.2</td><td>336.2</td></dl<></td></dl<>  | 0.1     | 1.1      | 293.5    | 2.8    | 2634.1   | 2.0      | 4.8         | 2717.6    | 1.5        | 250.0  | 0.7      | <dl< td=""><td>2.0</td><td>94.4</td><td>0.2</td><td>336.2</td></dl<>  | 2.0       | 94.4        | 0.2     | 336.2 |
| SD                   | 1158.1    | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.3     | 21.9   | 0.6       | <dl< td=""><td>0.1</td><td>1.2</td><td>239.7</td><td>3.3</td><td>2546.5</td><td>1.6</td><td>2.8</td><td>2360.7</td><td>1.2</td><td>236.8</td><td>0.4</td><td><dl< td=""><td>1.9</td><td>189.3</td><td>0.3</td><td>296.4</td></dl<></td></dl<> | 0.1     | 1.2      | 239.7    | 3.3    | 2546.5   | 1.6      | 2.8         | 2360.7    | 1.2        | 236.8  | 0.4      | <dl< td=""><td>1.9</td><td>189.3</td><td>0.3</td><td>296.4</td></dl<> | 1.9       | 189.3       | 0.3     | 296.4 |
| 80th percentile      | 2618.0    | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.5     | 39.3   | 0.5       | <dl< td=""><td>0.1</td><td>2.0</td><td>349.6</td><td>4.1</td><td>4190.0</td><td>3.2</td><td>6.9</td><td>3154.0</td><td>1.9</td><td>293.2</td><td>1.1</td><td><dl< td=""><td>2.6</td><td>60.0</td><td>0.2</td><td>385.8</td></dl<></td></dl<>  | 0.1     | 2.0      | 349.6    | 4.1    | 4190.0   | 3.2      | 6.9         | 3154.0    | 1.9        | 293.2  | 1.1      | <dl< td=""><td>2.6</td><td>60.0</td><td>0.2</td><td>385.8</td></dl<>  | 2.6       | 60.0        | 0.2     | 385.8 |
| Max                  | 3740      | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.4     | 93.3   | 2.5       | <dl< td=""><td>0.4</td><td>4.9</td><td>893</td><td>13.5</td><td>10800</td><td>5.8</td><td>12.3</td><td>10800</td><td>6.4</td><td>902</td><td>1.7</td><td><dl< td=""><td>7.3</td><td>940</td><td>1</td><td>1210</td></dl<></td></dl<>          | 0.4     | 4.9      | 893      | 13.5   | 10800    | 5.8      | 12.3        | 10800     | 6.4        | 902    | 1.7      | <dl< td=""><td>7.3</td><td>940</td><td>1</td><td>1210</td></dl<>      | 7.3       | 940         | 1       | 1210  |

|                      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |        |           |                                                                                                                                                                                                                                              |         |          | Table 23 | DS1 Se | diment S | Summar    | y Statistic | s         |            |        |          |                                                                      |           |             |         |       |
|----------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|----------|--------|----------|-----------|-------------|-----------|------------|--------|----------|----------------------------------------------------------------------|-----------|-------------|---------|-------|
|                      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |        |           |                                                                                                                                                                                                                                              |         |          |          |        | ٦        | otal Meta | als         |           |            |        |          |                                                                      |           |             |         |       |
|                      | Aluminium | Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Arsenic | Barium | Beryllium | Boron                                                                                                                                                                                                                                        | Cadmium | Chromium | Cobalt   | Copper | Iron     | Lead      | Lithium     | Manganese | Molybdenum | Nickel | Rubidium | Selenium                                                             | Strontium | Sulfur as S | Uranium | Zinc  |
| Detection limit (DL) | 50        | 50   0.1   0.1   50   0.1   0.1   50   0.1   0.1   0.1   0.1   0.1   1   0.1   50   0.1     40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40   40                                                                      |         |        |           |                                                                                                                                                                                                                                              |         |          |          |        |          |           |             |           |            |        | 0.5      |                                                                      |           |             |         |       |
| Sample size (n)      | 48        | 50   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1 |         |        |           |                                                                                                                                                                                                                                              |         |          |          |        |          |           |             |           |            |        | 48       |                                                                      |           |             |         |       |
| n > DL               | 48        | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 44      | 47     | 43        | 0                                                                                                                                                                                                                                            | 3       | 47       | 48       | 45     | 48       | 44        | 47          | 48        | 44         | 48     | 47       | 0                                                                    | 47        | 8           | 14      | 48    |
| Min                  | 260       | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1     | 0.1    | 0.1       | <dl< td=""><td>0.1</td><td>0.1</td><td>0.4</td><td>0.1</td><td>330</td><td>0.1</td><td>0.1</td><td>2.5</td><td>0.1</td><td>0.2</td><td>0.1</td><td><dl< td=""><td>0.1</td><td>50</td><td>0.1</td><td>0.5</td></dl<></td></dl<>               | 0.1     | 0.1      | 0.4      | 0.1    | 330      | 0.1       | 0.1         | 2.5       | 0.1        | 0.2    | 0.1      | <dl< td=""><td>0.1</td><td>50</td><td>0.1</td><td>0.5</td></dl<>     | 0.1       | 50          | 0.1     | 0.5   |
| Median               | 640.0     | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2     | 16.1   | 0.2       | <dl< td=""><td>0.1</td><td>0.6</td><td>171.0</td><td>1.2</td><td>1090.0</td><td>1.1</td><td>4.1</td><td>1435.0</td><td>1.0</td><td>126.0</td><td>0.9</td><td><dl< td=""><td>1.2</td><td>25.0</td><td>0.1</td><td>156.5</td></dl<></td></dl<> | 0.1     | 0.6      | 171.0    | 1.2    | 1090.0   | 1.1       | 4.1         | 1435.0    | 1.0        | 126.0  | 0.9      | <dl< td=""><td>1.2</td><td>25.0</td><td>0.1</td><td>156.5</td></dl<> | 1.2       | 25.0        | 0.1     | 156.5 |
| Mean                 | 1181.5    | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.4     | 19.1   | 0.3       | <dl< td=""><td>0.1</td><td>0.9</td><td>202.5</td><td>1.5</td><td>1456.0</td><td>1.3</td><td>4.8</td><td>1657.2</td><td>1.1</td><td>139.3</td><td>0.9</td><td><dl< td=""><td>1.3</td><td>34.4</td><td>0.1</td><td>177.3</td></dl<></td></dl<> | 0.1     | 0.9      | 202.5    | 1.5    | 1456.0   | 1.3       | 4.8         | 1657.2    | 1.1        | 139.3  | 0.9      | <dl< td=""><td>1.3</td><td>34.4</td><td>0.1</td><td>177.3</td></dl<> | 1.3       | 34.4        | 0.1     | 177.3 |
| SD                   | 935.2     | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.6     | 10.8   | 0.2       | <dl< td=""><td>0.1</td><td>0.8</td><td>113.2</td><td>1.1</td><td>944.9</td><td>0.8</td><td>5.4</td><td>840.3</td><td>0.4</td><td>63.0</td><td>0.4</td><td><dl< td=""><td>0.7</td><td>26.4</td><td>0.1</td><td>80.7</td></dl<></td></dl<>     | 0.1     | 0.8      | 113.2    | 1.1    | 944.9    | 0.8       | 5.4         | 840.3     | 0.4        | 63.0   | 0.4      | <dl< td=""><td>0.7</td><td>26.4</td><td>0.1</td><td>80.7</td></dl<>  | 0.7       | 26.4        | 0.1     | 80.7  |
| 80th percentile      | 2076.0    | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3     | 20.4   | 0.4       | <dl< td=""><td>0.1</td><td>1.1</td><td>220.0</td><td>1.8</td><td>1608.0</td><td>1.5</td><td>5.2</td><td>1896.0</td><td>1.2</td><td>158.8</td><td>1.2</td><td><dl< td=""><td>1.6</td><td>25.0</td><td>0.1</td><td>202.2</td></dl<></td></dl<> | 0.1     | 1.1      | 220.0    | 1.8    | 1608.0   | 1.5       | 5.2         | 1896.0    | 1.2        | 158.8  | 1.2      | <dl< td=""><td>1.6</td><td>25.0</td><td>0.1</td><td>202.2</td></dl<> | 1.6       | 25.0        | 0.1     | 202.2 |
| Max                  | 4000      | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.8     | 72.1   | 1.7       | <dl< td=""><td>0.2</td><td>4</td><td>656</td><td>7.1</td><td>4440</td><td>4.7</td><td>40</td><td>4230</td><td>2.4</td><td>392</td><td>2.1</td><td><dl< td=""><td>4</td><td>170</td><td>0.7</td><td>483</td></dl<></td></dl<>                 | 0.2     | 4        | 656      | 7.1    | 4440     | 4.7       | 40          | 4230      | 2.4        | 392    | 2.1      | <dl< td=""><td>4</td><td>170</td><td>0.7</td><td>483</td></dl<>      | 4         | 170         | 0.7     | 483   |

|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |         |        |           |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                              |          | Table 24 | DS2 Se | diment S | Summar    | y Statistic | s         |            |        |          |                                                                     |           |             |         |      |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|--------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|--------|----------|-----------|-------------|-----------|------------|--------|----------|---------------------------------------------------------------------|-----------|-------------|---------|------|
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |         |        |           |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                              |          |          |        | I        | otal Meta | als         |           |            |        |          |                                                                     |           |             |         |      |
|                      | Aluminium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Antimony | Arsenic | Barium | Beryllium | Boron                                                                                                                                                                                                                                                  | Cadmium                                                                                                                                                                                                                      | Chromium | Cobalt   | Copper | Iron     | Lead      | Lithium     | Manganese | Molybdenum | Nickel | Rubidium | Selenium                                                            | Strontium | Sulfur as S | Uranium | Zinc |
| Detection limit (DL) | 50   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1              |          |         |        |           |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                              |          |          |        |          |           |             |           |            | 0.5    |          |                                                                     |           |             |         |      |
| Sample size (n)      | (DL)   50   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1 <td>47</td> |          |         |        |           |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                              |          |          |        |          |           |             |           |            | 47     |          |                                                                     |           |             |         |      |
| n > DL               | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4        | 27      | 45     | 21        | 0                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                            | 47       | 47       | 44     | 47       | 44        | 47          | 47        | 42         | 47     | 47       | 0                                                                   | 45        | 6           | 10      | 47   |
| Min                  | 23.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1      | 0.1     | 0.1    | 0.1       | <dl< td=""><td><dl< td=""><td>0.3</td><td>3.8</td><td>0.1</td><td>410</td><td>0.1</td><td>0.5</td><td>13.5</td><td>0.1</td><td>11</td><td>0.3</td><td><dl< td=""><td>0.1</td><td>50</td><td>0.1</td><td>18.3</td></dl<></td></dl<></td></dl<>          | <dl< td=""><td>0.3</td><td>3.8</td><td>0.1</td><td>410</td><td>0.1</td><td>0.5</td><td>13.5</td><td>0.1</td><td>11</td><td>0.3</td><td><dl< td=""><td>0.1</td><td>50</td><td>0.1</td><td>18.3</td></dl<></td></dl<>          | 0.3      | 3.8      | 0.1    | 410      | 0.1       | 0.5         | 13.5      | 0.1        | 11     | 0.3      | <dl< td=""><td>0.1</td><td>50</td><td>0.1</td><td>18.3</td></dl<>   | 0.1       | 50          | 0.1     | 18.3 |
| Median               | 450.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1      | 0.1     | 4.5    | 0.1       | <dl< td=""><td><dl< td=""><td>0.7</td><td>25.3</td><td>0.7</td><td>950.0</td><td>0.9</td><td>1.0</td><td>188.0</td><td>0.2</td><td>21.4</td><td>0.7</td><td><dl< td=""><td>0.9</td><td>25.0</td><td>0.1</td><td>28.5</td></dl<></td></dl<></td></dl<>  | <dl< td=""><td>0.7</td><td>25.3</td><td>0.7</td><td>950.0</td><td>0.9</td><td>1.0</td><td>188.0</td><td>0.2</td><td>21.4</td><td>0.7</td><td><dl< td=""><td>0.9</td><td>25.0</td><td>0.1</td><td>28.5</td></dl<></td></dl<>  | 0.7      | 25.3     | 0.7    | 950.0    | 0.9       | 1.0         | 188.0     | 0.2        | 21.4   | 0.7      | <dl< td=""><td>0.9</td><td>25.0</td><td>0.1</td><td>28.5</td></dl<> | 0.9       | 25.0        | 0.1     | 28.5 |
| Mean                 | 726.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2      | 0.3     | 5.9    | 0.1       | <dl< td=""><td><dl< td=""><td>1.1</td><td>25.9</td><td>1.0</td><td>1611.9</td><td>1.2</td><td>1.1</td><td>214.8</td><td>0.2</td><td>25.7</td><td>0.8</td><td><dl< td=""><td>1.1</td><td>32.7</td><td>0.1</td><td>34.7</td></dl<></td></dl<></td></dl<> | <dl< td=""><td>1.1</td><td>25.9</td><td>1.0</td><td>1611.9</td><td>1.2</td><td>1.1</td><td>214.8</td><td>0.2</td><td>25.7</td><td>0.8</td><td><dl< td=""><td>1.1</td><td>32.7</td><td>0.1</td><td>34.7</td></dl<></td></dl<> | 1.1      | 25.9     | 1.0    | 1611.9   | 1.2       | 1.1         | 214.8     | 0.2        | 25.7   | 0.8      | <dl< td=""><td>1.1</td><td>32.7</td><td>0.1</td><td>34.7</td></dl<> | 1.1       | 32.7        | 0.1     | 34.7 |
| SD                   | 709.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.6      | 0.6     | 4.3    | 0.1       | <dl< td=""><td><dl< td=""><td>1.0</td><td>12.5</td><td>0.7</td><td>1648.1</td><td>0.7</td><td>0.5</td><td>116.1</td><td>0.2</td><td>12.1</td><td>0.4</td><td><dl< td=""><td>0.6</td><td>24.0</td><td>0.0</td><td>17.6</td></dl<></td></dl<></td></dl<> | <dl< td=""><td>1.0</td><td>12.5</td><td>0.7</td><td>1648.1</td><td>0.7</td><td>0.5</td><td>116.1</td><td>0.2</td><td>12.1</td><td>0.4</td><td><dl< td=""><td>0.6</td><td>24.0</td><td>0.0</td><td>17.6</td></dl<></td></dl<> | 1.0      | 12.5     | 0.7    | 1648.1   | 0.7       | 0.5         | 116.1     | 0.2        | 12.1   | 0.4      | <dl< td=""><td>0.6</td><td>24.0</td><td>0.0</td><td>17.6</td></dl<> | 0.6       | 24.0        | 0.0     | 17.6 |
| 80th percentile      | 766.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1      | 0.2     | 7.5    | 0.2       | <dl< td=""><td><dl< td=""><td>1.4</td><td>35.7</td><td>1.4</td><td>2210.0</td><td>1.6</td><td>1.4</td><td>294.4</td><td>0.3</td><td>35.5</td><td>1.0</td><td><dl< td=""><td>1.7</td><td>25.0</td><td>0.1</td><td>46.0</td></dl<></td></dl<></td></dl<> | <dl< td=""><td>1.4</td><td>35.7</td><td>1.4</td><td>2210.0</td><td>1.6</td><td>1.4</td><td>294.4</td><td>0.3</td><td>35.5</td><td>1.0</td><td><dl< td=""><td>1.7</td><td>25.0</td><td>0.1</td><td>46.0</td></dl<></td></dl<> | 1.4      | 35.7     | 1.4    | 2210.0   | 1.6       | 1.4         | 294.4     | 0.3        | 35.5   | 1.0      | <dl< td=""><td>1.7</td><td>25.0</td><td>0.1</td><td>46.0</td></dl<> | 1.7       | 25.0        | 0.1     | 46.0 |
| Max                  | 3050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2      | 0.5     | 20.3   | 0.4       | <dl< td=""><td><dl< td=""><td>4.8</td><td>71.1</td><td>3.2</td><td>8870</td><td>3.7</td><td>3.2</td><td>548</td><td>0.6</td><td>79.2</td><td>2.1</td><td><dl< td=""><td>3</td><td>160</td><td>0.2</td><td>111</td></dl<></td></dl<></td></dl<>         | <dl< td=""><td>4.8</td><td>71.1</td><td>3.2</td><td>8870</td><td>3.7</td><td>3.2</td><td>548</td><td>0.6</td><td>79.2</td><td>2.1</td><td><dl< td=""><td>3</td><td>160</td><td>0.2</td><td>111</td></dl<></td></dl<>         | 4.8      | 71.1     | 3.2    | 8870     | 3.7       | 3.2         | 548       | 0.6        | 79.2   | 2.1      | <dl< td=""><td>3</td><td>160</td><td>0.2</td><td>111</td></dl<>     | 3         | 160         | 0.2     | 111  |

|                      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |        |           |                                                                                                                                                                                                                                         |         |          | Table 25 | DS3 Se | diment S | Summar    | y Statistic | s         |            |        |          |                                                                      |           |             |         |      |
|----------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|----------|--------|----------|-----------|-------------|-----------|------------|--------|----------|----------------------------------------------------------------------|-----------|-------------|---------|------|
|                      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |        |           |                                                                                                                                                                                                                                         |         |          |          |        | 1        | otal Meta | als         |           |            |        |          |                                                                      |           |             |         |      |
|                      | Aluminium | Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Arsenic | Barium | Beryllium | Boron                                                                                                                                                                                                                                   | Cadmium | Chromium | Cobalt   | Copper | Iron     | Lead      | Lithium     | Manganese | Molybdenum | Nickel | Rubidium | Selenium                                                             | Strontium | Sulfur as S | Uranium | Zinc |
| Detection limit (DL) | 50        | 50   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   1   0.1   50   0.1     48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48   48<                                                          |         |        |           |                                                                                                                                                                                                                                         |         |          |          |        |          |           |             |           |            |        | 0.5      |                                                                      |           |             |         |      |
| Sample size (n)      | 48        | 50   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1 |         |        |           |                                                                                                                                                                                                                                         |         |          |          |        |          |           |             |           |            |        | 48       |                                                                      |           |             |         |      |
| n > DL               | 48        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21      | 45     | 14        | 0                                                                                                                                                                                                                                       | 2       | 47       | 48       | 45     | 48       | 45        | 47          | 48        | 24         | 48     | 48       | 0                                                                    | 45        | 13          | 10      | 48   |
| Min                  | 160       | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1     | 0.1    | 0.1       | <dl< td=""><td>0.1</td><td>0.1</td><td>4</td><td>0.1</td><td>160</td><td>0.1</td><td>0.1</td><td>18.7</td><td>0.1</td><td>5.6</td><td>0.3</td><td><dl< td=""><td>0.1</td><td>50</td><td>0.1</td><td>8</td></dl<></td></dl<>             | 0.1     | 0.1      | 4        | 0.1    | 160      | 0.1       | 0.1         | 18.7      | 0.1        | 5.6    | 0.3      | <dl< td=""><td>0.1</td><td>50</td><td>0.1</td><td>8</td></dl<>       | 0.1       | 50          | 0.1     | 8    |
| Median               | 405.0     | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1     | 4.0    | 0.1       | <dl< td=""><td>-</td><td>0.8</td><td>13.6</td><td>0.7</td><td>1200.0</td><td>0.8</td><td>0.7</td><td>121.5</td><td>0.1</td><td>13.7</td><td>0.8</td><td><dl< td=""><td>0.9</td><td>25.0</td><td>0.1</td><td>21.9</td></dl<></td></dl<>  | -       | 0.8      | 13.6     | 0.7    | 1200.0   | 0.8       | 0.7         | 121.5     | 0.1        | 13.7   | 0.8      | <dl< td=""><td>0.9</td><td>25.0</td><td>0.1</td><td>21.9</td></dl<>  | 0.9       | 25.0        | 0.1     | 21.9 |
| Mean                 | 988.0     | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3     | 7.5    | 0.2       | <dl< td=""><td>-</td><td>1.2</td><td>25.8</td><td>1.8</td><td>1625.8</td><td>1.7</td><td>0.8</td><td>195.3</td><td>0.2</td><td>22.3</td><td>0.9</td><td><dl< td=""><td>1.4</td><td>72.8</td><td>0.1</td><td>31.0</td></dl<></td></dl<>  | -       | 1.2      | 25.8     | 1.8    | 1625.8   | 1.7       | 0.8         | 195.3     | 0.2        | 22.3   | 0.9      | <dl< td=""><td>1.4</td><td>72.8</td><td>0.1</td><td>31.0</td></dl<>  | 1.4       | 72.8        | 0.1     | 31.0 |
| SD                   | 1330.5    | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.6     | 10.4   | 0.4       | <dl< td=""><td>-</td><td>1.0</td><td>30.3</td><td>3.2</td><td>1391.7</td><td>2.4</td><td>0.4</td><td>212.6</td><td>0.2</td><td>19.7</td><td>0.6</td><td><dl< td=""><td>1.6</td><td>151.4</td><td>0.3</td><td>27.5</td></dl<></td></dl<> | -       | 1.0      | 30.3     | 3.2    | 1391.7   | 2.4       | 0.4         | 212.6     | 0.2        | 19.7   | 0.6      | <dl< td=""><td>1.6</td><td>151.4</td><td>0.3</td><td>27.5</td></dl<> | 1.6       | 151.4       | 0.3     | 27.5 |
| 80th percentile      | 1614.0    | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2     | 8.9    | 0.2       | <dl< td=""><td>-</td><td>1.9</td><td>35.6</td><td>2.4</td><td>2216.0</td><td>2.2</td><td>1.1</td><td>252.0</td><td>0.2</td><td>28.5</td><td>1.2</td><td><dl< td=""><td>1.5</td><td>60.0</td><td>0.1</td><td>37.1</td></dl<></td></dl<>  | -       | 1.9      | 35.6     | 2.4    | 2216.0   | 2.2       | 1.1         | 252.0     | 0.2        | 28.5   | 1.2      | <dl< td=""><td>1.5</td><td>60.0</td><td>0.1</td><td>37.1</td></dl<>  | 1.5       | 60.0        | 0.1     | 37.1 |
| Max                  | 6600      | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9     | 62.3   | 2.7       | <dl< td=""><td>0.2</td><td>5.1</td><td>145</td><td>20.3</td><td>5910</td><td>14.6</td><td>2.6</td><td>1070</td><td>0.5</td><td>99.3</td><td>3.2</td><td><dl< td=""><td>9.4</td><td>920</td><td>1.6</td><td>128</td></dl<></td></dl<>    | 0.2     | 5.1      | 145      | 20.3   | 5910     | 14.6      | 2.6         | 1070      | 0.5        | 99.3   | 3.2      | <dl< td=""><td>9.4</td><td>920</td><td>1.6</td><td>128</td></dl<>    | 9.4       | 920         | 1.6     | 128  |

|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                        |         |        |           |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                               |          | Table 26 | 6 DS4 Se | diment S | Summar    | y Statistic | s         |            |        |          |                                                                      |           |             |         |      |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|-----------|-------------|-----------|------------|--------|----------|----------------------------------------------------------------------|-----------|-------------|---------|------|
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                        |         |        |           |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                               |          |          |          | Т        | otal Meta | als         |           |            |        |          |                                                                      |           |             |         |      |
|                      | Aluminium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Antimony                                                                                                                                                                                                                                                                                                               | Arsenic | Barium | Beryllium | Boron                                                                                                                                                                                                                                                   | Cadmium                                                                                                                                                                                                                       | Chromium | Cobalt   | Copper   | Iron     | Lead      | Lithium     | Manganese | Molybdenum | Nickel | Rubidium | Selenium                                                             | Strontium | Sulfur as S | Uranium | Zinc |
| Detection limit (DL) | 50.0   0.1   0.1   0.1   50.0   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1 </td <td>0.5</td> |                                                                                                                                                                                                                                                                                                                        |         |        |           |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                               |          |          |          |          |           |             |           |            | 0.5    |          |                                                                      |           |             |         |      |
| Sample size (n)      | J   50.0   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1                      |                                                                                                                                                                                                                                                                                                                        |         |        |           |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                               |          |          |          |          |           |             |           |            | 27.0   |          |                                                                      |           |             |         |      |
| n > DL               | 27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                      | 7.0     | 27.0   | 4.0       | 0                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                             | 27.0     | 27.0     | 26.0     | 27.0     | 27.0      | 27.0        | 27.0      | 5.0        | 27.0   | 27.0     | 0                                                                    | 27.0      | 4.0         | 2.0     | 27.0 |
| Min                  | 130.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <dl< td=""><td>0.1</td><td>1.0</td><td>0.1</td><td><dl< td=""><td><dl< td=""><td>0.2</td><td>2.1</td><td>0.1</td><td>290.0</td><td>0.3</td><td>0.1</td><td>7.6</td><td>0.1</td><td>1.7</td><td>0.2</td><td><dl< td=""><td>0.2</td><td>50.0</td><td>0.2</td><td>2.3</td></dl<></td></dl<></td></dl<></td></dl<>         | 0.1     | 1.0    | 0.1       | <dl< td=""><td><dl< td=""><td>0.2</td><td>2.1</td><td>0.1</td><td>290.0</td><td>0.3</td><td>0.1</td><td>7.6</td><td>0.1</td><td>1.7</td><td>0.2</td><td><dl< td=""><td>0.2</td><td>50.0</td><td>0.2</td><td>2.3</td></dl<></td></dl<></td></dl<>        | <dl< td=""><td>0.2</td><td>2.1</td><td>0.1</td><td>290.0</td><td>0.3</td><td>0.1</td><td>7.6</td><td>0.1</td><td>1.7</td><td>0.2</td><td><dl< td=""><td>0.2</td><td>50.0</td><td>0.2</td><td>2.3</td></dl<></td></dl<>        | 0.2      | 2.1      | 0.1      | 290.0    | 0.3       | 0.1         | 7.6       | 0.1        | 1.7    | 0.2      | <dl< td=""><td>0.2</td><td>50.0</td><td>0.2</td><td>2.3</td></dl<>   | 0.2       | 50.0        | 0.2     | 2.3  |
| Median               | 250.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <dl< td=""><td>0.1</td><td>2.5</td><td>0.1</td><td><dl< td=""><td><dl< td=""><td>0.4</td><td>8.4</td><td>0.3</td><td>650.0</td><td>0.5</td><td>0.6</td><td>46.6</td><td>0.1</td><td>7.9</td><td>0.4</td><td><dl< td=""><td>0.6</td><td>25.0</td><td>-</td><td>11.6</td></dl<></td></dl<></td></dl<></td></dl<>         | 0.1     | 2.5    | 0.1       | <dl< td=""><td><dl< td=""><td>0.4</td><td>8.4</td><td>0.3</td><td>650.0</td><td>0.5</td><td>0.6</td><td>46.6</td><td>0.1</td><td>7.9</td><td>0.4</td><td><dl< td=""><td>0.6</td><td>25.0</td><td>-</td><td>11.6</td></dl<></td></dl<></td></dl<>        | <dl< td=""><td>0.4</td><td>8.4</td><td>0.3</td><td>650.0</td><td>0.5</td><td>0.6</td><td>46.6</td><td>0.1</td><td>7.9</td><td>0.4</td><td><dl< td=""><td>0.6</td><td>25.0</td><td>-</td><td>11.6</td></dl<></td></dl<>        | 0.4      | 8.4      | 0.3      | 650.0    | 0.5       | 0.6         | 46.6      | 0.1        | 7.9    | 0.4      | <dl< td=""><td>0.6</td><td>25.0</td><td>-</td><td>11.6</td></dl<>    | 0.6       | 25.0        | -       | 11.6 |
| Mean                 | 409.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <dl< td=""><td>0.1</td><td>4.8</td><td>0.1</td><td><dl< td=""><td><dl< td=""><td>0.5</td><td>12.1</td><td>0.8</td><td>946.7</td><td>0.9</td><td>0.6</td><td>94.9</td><td>0.1</td><td>11.7</td><td>0.5</td><td><dl< td=""><td>1.0</td><td>36.5</td><td>-</td><td>16.0</td></dl<></td></dl<></td></dl<></td></dl<>       | 0.1     | 4.8    | 0.1       | <dl< td=""><td><dl< td=""><td>0.5</td><td>12.1</td><td>0.8</td><td>946.7</td><td>0.9</td><td>0.6</td><td>94.9</td><td>0.1</td><td>11.7</td><td>0.5</td><td><dl< td=""><td>1.0</td><td>36.5</td><td>-</td><td>16.0</td></dl<></td></dl<></td></dl<>      | <dl< td=""><td>0.5</td><td>12.1</td><td>0.8</td><td>946.7</td><td>0.9</td><td>0.6</td><td>94.9</td><td>0.1</td><td>11.7</td><td>0.5</td><td><dl< td=""><td>1.0</td><td>36.5</td><td>-</td><td>16.0</td></dl<></td></dl<>      | 0.5      | 12.1     | 0.8      | 946.7    | 0.9       | 0.6         | 94.9      | 0.1        | 11.7   | 0.5      | <dl< td=""><td>1.0</td><td>36.5</td><td>-</td><td>16.0</td></dl<>    | 1.0       | 36.5        | -       | 16.0 |
| SD                   | 646.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <dl< td=""><td>0.0</td><td>7.4</td><td>0.2</td><td><dl< td=""><td><dl< td=""><td>0.4</td><td>12.2</td><td>1.3</td><td>969.6</td><td>1.0</td><td>0.4</td><td>115.3</td><td>0.1</td><td>10.9</td><td>0.4</td><td><dl< td=""><td>1.5</td><td>37.0</td><td>-</td><td>16.1</td></dl<></td></dl<></td></dl<></td></dl<>      | 0.0     | 7.4    | 0.2       | <dl< td=""><td><dl< td=""><td>0.4</td><td>12.2</td><td>1.3</td><td>969.6</td><td>1.0</td><td>0.4</td><td>115.3</td><td>0.1</td><td>10.9</td><td>0.4</td><td><dl< td=""><td>1.5</td><td>37.0</td><td>-</td><td>16.1</td></dl<></td></dl<></td></dl<>     | <dl< td=""><td>0.4</td><td>12.2</td><td>1.3</td><td>969.6</td><td>1.0</td><td>0.4</td><td>115.3</td><td>0.1</td><td>10.9</td><td>0.4</td><td><dl< td=""><td>1.5</td><td>37.0</td><td>-</td><td>16.1</td></dl<></td></dl<>     | 0.4      | 12.2     | 1.3      | 969.6    | 1.0       | 0.4         | 115.3     | 0.1        | 10.9   | 0.4      | <dl< td=""><td>1.5</td><td>37.0</td><td>-</td><td>16.1</td></dl<>    | 1.5       | 37.0        | -       | 16.1 |
| 80th percentile      | 376.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <dl< td=""><td>0.1</td><td>4.8</td><td>0.1</td><td><dl< td=""><td><dl< td=""><td>0.7</td><td>19.8</td><td>0.8</td><td>920.0</td><td>1.0</td><td>0.8</td><td>168.2</td><td>0.1</td><td>16.5</td><td>0.6</td><td><dl< td=""><td>0.8</td><td>25.0</td><td>-</td><td>22.7</td></dl<></td></dl<></td></dl<></td></dl<>      | 0.1     | 4.8    | 0.1       | <dl< td=""><td><dl< td=""><td>0.7</td><td>19.8</td><td>0.8</td><td>920.0</td><td>1.0</td><td>0.8</td><td>168.2</td><td>0.1</td><td>16.5</td><td>0.6</td><td><dl< td=""><td>0.8</td><td>25.0</td><td>-</td><td>22.7</td></dl<></td></dl<></td></dl<>     | <dl< td=""><td>0.7</td><td>19.8</td><td>0.8</td><td>920.0</td><td>1.0</td><td>0.8</td><td>168.2</td><td>0.1</td><td>16.5</td><td>0.6</td><td><dl< td=""><td>0.8</td><td>25.0</td><td>-</td><td>22.7</td></dl<></td></dl<>     | 0.7      | 19.8     | 0.8      | 920.0    | 1.0       | 0.8         | 168.2     | 0.1        | 16.5   | 0.6      | <dl< td=""><td>0.8</td><td>25.0</td><td>-</td><td>22.7</td></dl<>    | 0.8       | 25.0        | -       | 22.7 |
| Max                  | 3530.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <dl< td=""><td>0.2</td><td>37.6</td><td>0.9</td><td><dl< td=""><td><dl< td=""><td>1.7</td><td>58.0</td><td>5.6</td><td>5040.0</td><td>5.5</td><td>1.6</td><td>535.0</td><td>0.3</td><td>46.5</td><td>1.6</td><td><dl< td=""><td>8.1</td><td>200.0</td><td>0.4</td><td>64.7</td></dl<></td></dl<></td></dl<></td></dl<> | 0.2     | 37.6   | 0.9       | <dl< td=""><td><dl< td=""><td>1.7</td><td>58.0</td><td>5.6</td><td>5040.0</td><td>5.5</td><td>1.6</td><td>535.0</td><td>0.3</td><td>46.5</td><td>1.6</td><td><dl< td=""><td>8.1</td><td>200.0</td><td>0.4</td><td>64.7</td></dl<></td></dl<></td></dl<> | <dl< td=""><td>1.7</td><td>58.0</td><td>5.6</td><td>5040.0</td><td>5.5</td><td>1.6</td><td>535.0</td><td>0.3</td><td>46.5</td><td>1.6</td><td><dl< td=""><td>8.1</td><td>200.0</td><td>0.4</td><td>64.7</td></dl<></td></dl<> | 1.7      | 58.0     | 5.6      | 5040.0   | 5.5       | 1.6         | 535.0     | 0.3        | 46.5   | 1.6      | <dl< td=""><td>8.1</td><td>200.0</td><td>0.4</td><td>64.7</td></dl<> | 8.1       | 200.0       | 0.4     | 64.7 |



Total Aluminium

**Total Antimony** 




**Total Arsenic** 

**Total Barium** 





**Total Beryllium** 









**Total Iron** 





Total Manganese





**Total Molybdenum** 







Sample month



Total Sulfur as S

Total Uranium





















**Total Chromium** 













**Total Manganese** 



Total Rubidium





Total Sulfur as S 500 450 400 350 Concentration (mg/kg) US1 • 300 US2 DS1 250 DS2 • DS3 200 DS4 150 100 • 50 0





Total Uranium

## 4.3 Petrographic Analysis

Petrographic analysis requires air drying of the sediment sub-samples, plus crushing any oversize material down to a 1mm top size. The crushed samples are then mounted in an acrylic resin, which is polished via a multistage polishing procedure to produce a suitable surface for reflected light microscopy. A point count of each sample is then conducted with the material under the crosshairs of the microscope being classified as coal, char, mineral matter or organic matter. 500 points are counted on each sample at 500x magnification. The point counts are then converted to percentages.

Percent mineral concentrations for the October 2017 report were incorrect and ALS Laboratory provided a revised report for inclusion in this six monthly report.

**Appendix C** provides the Revised October 17 Microscopic Report plus the April, June and August 2018 Microscopic Reports prepared by ALS Laboratory for this reporting period. Updated site summary statistics (Sample Number, Minimum, Median, Mean and Standard Deviation of the Mean (SD)), are shown in **Tables 27 to 32.** 

Variation in site percent coal, char, mineral matter and organic matter over time are shown in **Control Charts** below and the statistical data for all sites to date are compared in **Box Plots** following the Control Charts.

|          | Table 27 US1 Microscopic Summary Statistics |          |             |             |
|----------|---------------------------------------------|----------|-------------|-------------|
|          | Coal (%)                                    | Char (%) | Mineral (%) | Organic (%) |
| Sample # | 24                                          | 24       | 24          | 24          |
| Min      | 0                                           | 0        | 96          | 0           |
| Median   | 0.2                                         | 0        | 98.6        | 1.3         |
| Mean     | 0.2                                         | 0.5      | 97.7        | 2.0         |
| SD       | 0.4                                         | 1.9      | 1.8         | 1.9         |
| Max      | 1                                           | 9        | 100         | 8           |

|          | Table 28 US2 Microscopic Summary Statistics |          |             |             |
|----------|---------------------------------------------|----------|-------------|-------------|
|          | Coal (%)                                    | Char (%) | Mineral (%) | Organic (%) |
| Sample # | 24                                          | 24       | 24          | 24          |
| Min      | 0                                           | 0        | 87          | 0           |
| Median   | 0.0                                         | 0.0      | 96.4        | 3.0         |
| Mean     | 0.8                                         | 0.6      | 95.3        | 3.8         |
| SD       | 1.6                                         | 1.8      | 3.5         | 3.2         |
| Max      | 6                                           | 7        | 100         | 13          |

|          | Table 29 DS1 Microscopic Summary Statistics |          |             |             |
|----------|---------------------------------------------|----------|-------------|-------------|
|          | Coal (%)                                    | Char (%) | Mineral (%) | Organic (%) |
| Sample # | 45                                          | 45       | 45          | 45          |
| Min      | 0                                           | 0        | 84          | 0           |
| Median   | 0.0                                         | 0.0      | 97.4        | 2.0         |
| Mean     | 0.2                                         | 0.3      | 97.1        | 2.5         |
| SD       | 0.5                                         | 0.7      | 3.0         | 2.9         |
| Max      | 2                                           | 3        | 100         | 16          |

|          | Table 30 DS2 Microscopic Summary Statistics |          |             |             |
|----------|---------------------------------------------|----------|-------------|-------------|
|          | Coal (%)                                    | Char (%) | Mineral (%) | Organic (%) |
| Sample # | 45                                          | 45       | 45          | 45          |
| Min      | 0                                           | 0        | 78          | 0           |
| Median   | 0.0                                         | 0.0      | 98.0        | 2.0         |
| Mean     | 0.2                                         | 0.8      | 96.3        | 3.1         |
| SD       | 0.5                                         | 2.8      | 4.3         | 4.2         |
| Max      | 2                                           | 15       | 100         | 22          |

|          | Table 31 DS3 Microscopic Summary Statistics |          |             |             |
|----------|---------------------------------------------|----------|-------------|-------------|
|          | Coal (%)                                    | Char (%) | Mineral (%) | Organic (%) |
| Sample # | 45                                          | 45       | 45          | 45          |
| Min      | 0                                           | 0        | 85          | 0           |
| Median   | 0.0                                         | 0.0      | 98.0        | 1.3         |
| Mean     | 0.3                                         | 1.9      | 96.2        | 2.8         |
| SD       | 0.5                                         | 7.5      | 4.2         | 3.6         |
| Max      | 2                                           | 47       | 100         | 13          |

|          | Table 32 DS4 Microscopic Summary Statistics |          |             |             |
|----------|---------------------------------------------|----------|-------------|-------------|
|          | Coal (%)                                    | Char (%) | Mineral (%) | Organic (%) |
| Sample # | 24                                          | 24       | 24          | 24          |
| Min      | 0                                           | 0        | 88          | 0           |
| Median   | 0.0                                         | 0.0      | 98.9        | 1.0         |
| Mean     | 0.1                                         | 0.6      | 96.4        | 3.1         |
| SD       | 0.4                                         | 1.5      | 4.3         | 3.7         |
| Max      | 1.6                                         | 6        | 100         | 11          |



Sediment Coal Proportion



Sediment Mineral Proportion





Sediment Coal Proportion





Sediment Mineral Proportion



#### 4.4 Visual Inspections for Coal Fines

As per the sampling schedule shown in Table 1, visual inspections for coal fines accumulations are made at sites DS1 to DS4 on a quartely basis and at DS5 on a six monthly basis.

At each sampling occasion the river sections up- and downstream of the water quality sampling sites (and/or the aquatic ecology sampling reach) are inspected for accumulated sediment drifts and the drifts are inspected for obvious coal fine content. Sediment accumulations when found are photographed, and a selection of photographs of the sediment accumulations up and downstream at sites DS1 to DS5 are appended at **Appendix C1**.

As per the first six-monthly report, at no point were accumulated deposits of coal fines identified for the reporting period covered by this report (March 2018 to August 2018). In places of low flow where there were accumulated sediments, the sandy sediments or cobbles were covered in fine silt or slit-algae matrix cover (see Appendix C1 photographs).

### 5. AQUATIC ECOLOGY SAMPLING RESULTS

The EMP requires bi-annual sampling for macroinvertebrates at sites US1 to US4, annual sampling for fish using replicate bait traps for 24-hour periods at sites US1 to DS 4 and annual sampling for frogs at sites US1 to DS4.

An initial trial EMP aquatic ecology sampling program was undertaken in Autumn 2016 with the first EMP sampling undertaken in Spring 2016. A report prepared by MPR for these two sampling events was appended to the first six monthly EMP report in March 2017. The Autumn 2017 survey was included I n the second EMP report and the Spring 2017 survey was included in the third EMP report.

The Autumn 2018 aquatic ecology sampling program was undertaken between 16 and 23 April 2018, and the MPR report is appended to this report as **Appendix D**.

## 5.1 Aquatic Ecology Methods and Data Summary

The Aquatic Ecology program includes the following stream-health sampling components undertaken at all sites (US1 to DS5):

- Site aquatic ecology habitat condition is estimated on each six-monthly sampling occasion using a modified version of the River-Creek-Environment (RCE) stream site condition index.
- A submersible water quality data logger is used to record water depth, temperature, dissolved oxygen concentration and saturation, pH, conductivity and turbidity at all aquatic ecology sampling sites.
- Aquatic macroinvertebrate assemblages are determined using the standardised National River Process and Management Program River Bioassessment protocols known as Australian River Assessment System (AusRivAS), and sampling is undertaken at both 'edge' and 'riffle' sites where these habitats (as defined by AusRivAS) exist at the sites (i.e, sites DS1 to DS5).
- For the upper river sites US1 and US2 there are no riffle sections as defined. Accordingly, only '*edge*' sampling is undertaken at these sites.
- Sampling and observations for fish are undertaken every six months at part of the aquatic ecology sampling program. At each aquatic ecology sampling site, four fish bait traps are set at suitable locations, left overnight and collected the next day during macroinvertebrate sampling.
- Frog searches are undertaken every six months at part of the aquatic ecology sampling program. Frog searches are undertaken twice at each site visit (i.e., when fish traps are set, and when the site is revisited to collect fish traps and undertake macroinvertebrate sampling. A dedicated frog call recorder is also deployed for overnight recording at selected sites each season.

Habitat assessment, water quality results, fish trapping and observation results and frog searches plus call results are all tabulated in the **Appendix D** report and the RCE plus water temperature and conductivity variation for the combined sites are also shown graphically.

#### 5.2 Macroinvertebrate Monitoring Data Summary

The period between the last aquatic ecology sampling in October 2017 through to the April 2018 sampling period has been characterised by long dry spells punctuated by short periods of low intensity rainfall and very few heavy rainfall events (the largest being 46mm on 21 October 17 and 32.6mm on 20 February 18). March monthly rainfall (82.2mm) was below average with most (53.2mm) recorded over six days (21-27 March).

There was then only 4.8mm rainfall recorded for the 19 days leading up to the sampling period, with 3.8mm of this recorded over the two days prior to sampling commencing on 16th April. Sampling was then interrupted with 12.4mm recorded on 20th April, and sampling completed on 23<sup>rd</sup> April.

LDP discharges were also reduced between Spring 17 and Autumn 18. The average daily discharge for 2017 was 13.42 ML/day, and for the March to April 2018 period leading up to sampling, the daily average was reduced to 6.04 ML/day.

The macroinvertebrate assemblage data comprises presence-absence data for taxa identified to the taxonomic levels specified in AusRivAS (generally to Family level). These data are used to compile the following macroinvertebrate indices – compiled for both 'edge' and 'riffle' sample results:

- Site Aquatic Habitat Condition (**RCE Index**)
- Site **Diversity index** (taxa richness).
- SIGNAL Index (Stream Invertebrate Grade Number Average Level).
- **EPT index**; the combined number of Ephemeroptera (mayfly), Plecoptera (stonefly) and Trichoptera (caddis-fly) families present per site.

These indices are tabulated and compared to previous seasonal results in cluster bar control graphs and the variation in the indices for the Autumn 2018 survey are also tested against the overall variation in each index for the previous surveys (in this case four surveys – Autumn 2016 & 2017 and Spring 2016 & 2017). Specifically, the test examines whether the value is lower than the range Mean – Standard Deviation (X-SD) of the former data. It should be noted that in this case comparisons against only three previous data sets does not carry much weight and will only become more meaningful once there have been at least two Autumn and two spring surveys (i.e., starting Autumn 2018):

- All site RCE indices were within or above the range X-SD, with the exception of site DS4 which was slightly under the X-SD range.
- Edge Sample Diversity indices for sites US1, DS3 and DS4 were within or above the range X-SD and the rest were below.
- All Edge SIGNAL scores were within or above the range X-SD, with the exception of site US2, DS1 and DS4.
- All Edge EPT scores were within or above the range X-SD, with the exception of site DS1.
- All Riffle Diversity Site results were above the range X-SD except at sites DS3 and DS5. DS1 was well above the X+SD range.
- Riffle SIGNAL scores were all above the range X-SD.
- Riffle EPT scores were within or above the range X-SD with the exception of sites DS4 and DS5. DS1 and DS2 scores were above the X+SD range.

# 5.3 Vertebrate (Fish and Frog) Monitoring Data Summary

Mountain galaxias were the only fish caught in traps or observed in Autumn 2018 and were caught at four sites. A total of 15 were caught. Mountain galaxias have been found or sighted at all sites and it is concluded that there is no physical barrier for this species to travel between sites.

For the Autumn 2018 survey no tadpoles or frogs were observed during the systematic site searches. From frog call recordings overnight for the Autumn 2018 survey sites, only one call - Red Crowned Toadlet, *Pseudophryne australis* was recorded - at site DS3.

#### 6. DISCUSSION

This is the fourth data report on the implementation and progress of the EMP and reports on monitoring undertaken and completed between March 2018 and August 2018.

For **water quality analysis** the concentrations of the following analytes remained less than detection (<DL) for all sites:

- Hydroxide and Carbonate Alkalinity (DL< 1mg/L) Oil and Grease (DL < 5 mg/L), Total Phenol (DL < 0.05mg/L) and Total Cyanide (DL < 0.004mg/L).</li>
- Beryllium, Boron, Lead and Uranium (DL 0.001mg/L), Selenium (DL 0.01mg/L).
- The concentrations of Antimony, Arsenic, Cadmium, Chromium and Copper have remained less than detection (DL 0.001mg/L) for most sites and for most sampling times to date.

For **sediment total metal analysis**, the concentrations of total Selenium (DL <1 mg/kg), Boron (DL <50mg/kg) and Cadmium (DL < 0.1 mg/kg, except US2 in Feb 18, April 18 & Jun 18) have remained less than their relative detection limit for all sites and for all sampling times to date. Most site Antimony, Arsenic and Beryllium concentrations have remained below detection or just above detection.

For **aquatic ecology monitoring** in Autumn 2018, the period between the last aquatic ecology sampling in October 2017 through to the April 2018 sampling period was characterised by long dry spells punctuated by short periods of low intensity rainfall and a few heavy rainfall events, and for the March to April 2018 period leading up to sampling, the daily average LDP discharge was reduced to around 6ML/day:

- Comparisons of individual site Streamhealth indices against study Mean ± Standard Deviations (X ± SD) indicated the most index results were within the site X ± SD ranges with individual exceptions for all sites except US1.
- Mountain galaxias were recorded at most sites including US1 and Giant Spiny Crayfish were recorded or observed from Site DS1 and downstream to DS5. There were no introduced fish found or observed. Whilst no tadpoles or frogs were found or observed during systematic site searches, a Red Crowned Toadlet was recorded overnight at Site DS3.

The aquatic ecology monitoring results indicate that the Wollamgambe River within the study area provides good aquatic habitat for a range of macroinvertebrate species and provides fish passage and habitat for native fish species.

